Меню

Драйвер для питания лазерного диода



Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Драйвер лазерного светодиода своими руками

По сравнению со светом обычных светодиодов лазерный свет имеет высокую концентрацию, он имеет более узкий угол обзора. Для подключения лазерного диода к электронной цепи понадобится специальная схема, называемая драйвером лазерного диода. В данном материале будет показано, как самостоятельно собрать простой драйвер лазерного диода на основе LM317.

Драйвер лазерного диода – это схема, которая используется для ограничения тока и затем подачи его на лазерный диод, чтобы он работал должным образом. Если мы напрямую подключим его к источнику питания, из-за потребности в большем токе он может не заработать или даже привести к некоторым повреждениям цепи.

Если ток будет небольшим, лазерный светодиод не будет работать из-за отсутствия достаточной мощности для включения. Таким образом, необходима схема драйвера для обеспечения правильного значения тока, при котором лазерный диод перейдет в рабочее состояние. Простому светодиоду нужен только резистор для ограничения тока, но в случае с лазерным диодом нам нужна правильная схема для ограничения и регулирования тока. Для регулирования мощности в цепи драйвера лазерного диода можно использовать LM317.

Трехвыводная микросхема LM317 представляет собой стабилизатор напряжения. На своем выходе он может выдавать от 1.25 до 37 вольт. Внешний вид LM317 с подписанными выводами представлен на изображении ниже.

LM317 является регулируемым стабилизатором, иными словами можно изменять значение напряжения на выходе в зависимости от потребностей, используя два внешних резистора, подключенных к линии регулировки (Adjust). Эти два резистора работают как цепь делителя напряжения, используемая для увеличения или уменьшения выходного напряжения. LM317 обеспечивает ограничение тока и защиту от тепловой перегрузки.

Схема драйвера лазерного диода на основе стабилизатора напряжения LM317 показана на рисунке ниже.

Ее довольно быстро можно собрать на макетной плате.

Работает схема следующим образом. Когда батарея начинает подавать напряжение, оно сначала протекает через керамический конденсатор (0.1 мкФ). Этот конденсатор используется для фильтрации высокочастотного шума от нашего источника постоянного тока и обеспечивает входной сигнал для LM317. Потенциометр (10 КОм) и резистор (330 Ом), подключенные к линии регулировки, используются в качестве схемы ограничения напряжения. Выходное напряжение полностью зависит от значения этого резистора и потенциометра. Выходное напряжение стабилизатора попадает на фильтр второго конденсатора (1 мкФ). Этот конденсатор ведет себя как балансировщик мощности для фильтрации флуктуирующих сигналов. В итоге можно регулировать интенсивность лазерного излучения, вращая ручку потенциометра.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Драйвер для лазерного диода — схема подключения лазера

Пишущих DVD приводов, несмотря на тотальное засилие флешек, осталось ещё очень много. Валяются многие из них нерабочие — выкидывать жалко, а куда применить непонятно… Ну хотя бы сделать самодельный 1 ваттный лазер, с помощью которого можно поджигать спички ничуть не хуже чем с помощью дорогих с Алиэкспресса. Но просто так к батарейке лазерный диод не подключить — нужен драйвер (формирователь правильного напряжения).

Схема драйвера питания лазера

Управляемую напряжением цепь источника тока можно использовать для того чтобы управлять постоянным его течением через лазерный диод. Этот простой линейный драйвер обеспечивает более чистое питание лазерного диода, чем классический PWM (ШИМ).

Параметры устройства

  • Питание элемента — 3,3 В постоянного тока
  • Ток нагрузки до 300 мА (при изменении схемы до 1 А)
  • Плавная регулировка мощности лазера с помощью переменника

Ток лазерного диода приводит к дифференциально измеряемому падению напряжения через резистор шунта (RSHUNT), включенного последовательно с лазерным диодом. Прохождение выхода проконтролировано вводом напряжения (VIN) который приходит от регулятора Pr1 уравновешивая его.

При необходимости, ток выхода можно поднять в несколько раз изменив транзистор на более мощный (снабдив теплоотводом) и понизив сопротивление резистора шунта. Скачать рисунок платы можно по ссылке.

Предупреждаем: если вы по своей глупости выжгете глаза — мы не виноваты!

Источник

Как подключить лазерный диод, схема

Сегодня во многих приборах бытового и любого другого плана используются лазерные диоды (полупроводники) для создания целенаправленного луча. И самым важным моментом в самостоятельной сборке лазерной установки является подключение диода.

Из этой статьи вы узнаете обо всем, что нужно для качественного подключения лазерного диода.

Особенности полупроводника и его подсоединения

От led диода лазерная модель отличается очень маленькой площадью кристалла. В связи с чем наблюдается значительная концентрация мощности, что приводит к кратковременному превышению значения тока в переходе. Из-за этого такой диод может легко перегореть. Поэтому, чтобы лазерный диод прослужил как можно дольше, необходима специальная схема – драйвер.

Обратите внимание! Любой диод лазерного типа необходимо питать стабилизированным током. Хоте некоторые разновидности, дающие красный свет, ведут себя достаточно стабильно, даже если имеют не стабильное питание.

Красный лазерный диод

Читайте также:  Здоровый образ питания с врачом

Но, даже если используют драйвер, диод нельзя подключать к нему. Здесь необходим еще «датчик тока». В его роли часто выступает общий провод низкоомного резистора, который включается в разрыв между этими деталями. В результате схема имеет один существенный недостаток — минус питания оказывается «оторван» от минуса, имеющегося в питании схемы. Кроме этого данная схема имеет еще один минус — на токоизмерительном резисторе происходит потеря мощности.
Собираясь подключить лазерный диод, необходимо понимать, к какому драйверу его следует подключать.

Классификация драйверов

На данный момент существует два основных типа драйверов, которые можно подключить к нашему полупроводнику:

  • импульсный драйвер. Представляет собой частный случай преобразователя напряжения импульсного характера. Он может быть как понижающим, так и повышающим. У них входная мощность приблизительно равна выходной. При этом имеется незначительное преобразование энергии в тепло. Упрощенная схема импульсного драйвера имеет следующий вид;

Упрощенная схема импульсного драйвера

  • линейный драйвер. На такой драйвер схема обычно подает больше напряжения, чем требует полупроводник. Для его гашения необходим транзистор, который лишнюю энергию будет выделять с теплом. Такой драйвер имеет небольшой КПД, в связи с чем его используют крайне редко.

Обратите внимание! При использовании линейных микросхем-стабилизаторов интегрального плана при падении входного напряжения на диоде ток будет уменьшаться.

Схема линейного драйвера

В связи с тем, что питание любого лазерного диода может осуществляться через два разных типа драйверов, то схема подключения будет различаться.

Особенности соединения

Схема, которая будет использоваться для питания лазерного диода, может содержать в себе не только драйвер и «датчик тока», но и источник питания – аккумулятор или батарею.

Вариант схемы подключения

Обычно аккумулятор/батарея в таком случае должны иметь напряжение в 9 В. Кроме них в схему обязательно должны входить лазерный модуль и токоограничивающий резистор.

Обратите внимание! Чтобы не тратиться на диод, его можно извлечь из DVD привода. При этом это должен быть именно компьютерное устройство, а не стандартный проигрыватель.

Лазерный полупроводник имеет три вывода (ноги), два из которых размещены по бокам, а один – посредине. Средний выход следует подключать к минусовой клемме выбранного источника питания. Положительную клемму нужно подсоединять к левой или правой «ноге». Выбор левой или правой стороны зависит от производителя полупроводника. Поэтому нужно определить, какой именно вывод будет: «+» и «-». Для этого на полупроводник следует подать питание. Здесь отлично справятся две батарейки, каждая по 1,5 вольт, а также резистор в 5 Ом.
Минусовый вывод у источника питания следует подключить к центральному минусовому выводу, определенного у диода. При этом плюсовая сторона должна подсоединяться к каждой из двух оставшихся клемм полупроводника поочередно. Таким образом его можно подключать и к микроконтроллеру.
Питание для лазерного диода можно осуществить с помощью 2-3 пальчиковых батареек. Но при желании в схему можно включить и аккумулятор от мобильного телефона. В таком случае необходимо помнить, что понадобиться еще дополнительный ограничительный резистор на 20 Ом.

Подсоединение к сети 220 В

Полупроводник можно запитать от 220 В. Но здесь необходимо создать дополнительную защиту от высокочастотных всплесков напряжения.

Вариант схемы питания диода от сети в 220 В

Такая схема должна включать в себя следующие элементы:

  • стабилизатор напряжения;
  • токоограничивающий резистор
  • конденсатор;
  • лазерный диод.

Сопротивление и стабилизатор будут образовывать блок, который сможет препятствовать токовым выбросам. Для предотвращения всплесков напряжения необходим стабилитрон. Конденсатор будет препятствовать появлению высокочастотных всплесков. Если такая схема была правильно собрана, то стабильная работа полупроводника будет гарантирована.

Пошаговая инструкция подсоединения

Самым удобным в плане создания лазерной установки своими руками будет красный полупроводник, имеющий выходную мощность примерно в 200 милливатт.

Обратите внимание! Именно таким полупроводником оснащен любой компьютерный DVD-проигрыватель. Это значительно упрощает поиск источника света.

Подключение выглядит следующим образом:

  • для подключения необходимо использовать один полупроводник. Их обязательно нужно проверить на работоспособность (достаточно просто подключить к батарейке);
  • выбираем более яркую модель. При проверке инфракрасного светодиода (при взятии его из компьютерного проигрывателя), он будет светить слабым красным свечением. Помните, что его

ЗАПРЕЩАЕТСЯ направлять в глаза, иначе можно полностью лишиться зрения;

  • далее лазер устанавливаем на самодельный радиатор. Чтобы это сделать, нужно просверлить в алюминиевой пластине (толщина примерно 4 мм) отверстие с таким диаметром, чтобы диод входил в него достаточно туго;
  • между лазером и радиатором необходимо нанести небольшой слой термопласты;
  • далее берем проволочный керамический резистор, имеющий сопротивление 20 Ом с мощностью в 5 Вт и соблюдая полярность подключаем его к схеме. Через него нужно подключить лазер и источник питания (мобильный аккумулятор или батарейку);
  • сам лазер следует зашунтовать с помощью керамического конденсатора, имеющего любую емкость;
  • далее отворачивая устройство от себя, следует подключить его к сети питания. В результате должен включить красный луч.
Читайте также:  Как привить культуру питания ребенку

Красный луч от самодельного устройства

После этого его можно сфокусировать при помощи двояковыпуклой линзы. Сфокусируйте его на несколько секунд в одной точке на бумаге, которая поглощает красный спектр. Лазер на ней оставит красный свет.
Как видите, получилось работающее устройство, которое подключено к сети в 220 В. Используя различные схемы и варианты подключения, можно создать разные приспособления, вплоть до карманной лазерной указки.

Заключение

Подключая лазерный диод, необходимо помнить о безопасном обращении с ним, а также знать нюансы, которые присутствуют в его работе. После этого останется только подобрать понравившуюся схему и подключить полупроводник. Главное помните, что все контакты должны быть хорошо запаяны, иначе деталь может перегореть в процессе работы.

Источник

Драйвер для питания лазерного диода

Можно ли считать хорошим портативный лазер, мощность которого падает с разрядом батарей? Лазер, у которого ценный Лазерный Диод(ЛД) почти никак не защищен со стороны питания? Конечно же, нет.

Чтобы ЛД прослужил долго, ему необходимы стабильные параметры питающего напряжения и/или тока. Именно эти задачи возлагаются на специальную схему — драйвер лазерного диода. Все лазерные диоды рекомендуется питать стабилизированным током, хотя некоторые из них (В частности, красные 650нм из дисководов) ведут себя достаточно стабильно и при питании стабильным напряжением. Вы спросите, зачем применять какие-то стабилизаторы напряжения, если можно просто стабилизировать ток? Дело в том, что стабилизаторы тока немного сложнее стабализаторов напряжения. Например, из-за наличия «датчика тока»(о нем речь пойдет чуть ниже). Также при отстутствии нагрузки и защит по превышению напряжения(что опять-таки ведет к усложнению), на выходе такого драйвера напряжение может достигать больших значений (У идеального стабилизатора тока при отстутствии нагрузки напряжение поднялось бы до бесконечности. Но т.к. воздух имеет некоторое сопротивление, рано или поздно возник бы высоковольтный разряд и продолжил бы гореть, а на практике ничего идеального не существует, и раньше возникновения пробоя воздуха случается выход схемы из строя, или в случае невозможности поднятия напряжения выше входного, как в случае линейных схем, оно останавливается на определенном уровне. Но даже в этом случае диод нельзя подключать к работающему драйверу). Из основной выполняемой функции вытекает необходимость применения т.н. «датчика тока». Как правило, им является включенный в разрыв между лазерным диодом и общим проводом низкоомный резистор. Поддерживая напряжение на нем, схема поддерживает ток. Такое решение обладает некоторыми недостатками — обычно минус питания диода оказывается «оторван» от минуса питания схемы. Второй недостаток — потери мощности на токоизмерительном резисторе. В следствии вышеизложенного обычно находят компромисс между стабилизацией тока и напряжения.

Классификация по принципу работы

Теперь рассмотрим два основных типа драйверов при классификации по принципу работы — импульсные и линейные. На вход линейным подается всегда большее напряжение, чем нужно диоду. Разница напряжений тут будет гаситься на силовом элементе — транзиcторе — будет выделяться в виде тепла (Выделяемая тепловая мощность — разница входного и выходного напряжений умноженная на ток в цепи). Естественно, ток на диоде будет уменьшаться при падении входного напряжения ниже значения, равного сумме напряжений на ЛД, минимальномм падением на транзисторе и токоизмерительном резисторе, если это стабилизатор тока. Это касается и линейных интегральных микросхем-стабилизаторов. Для полевых транзисторов минимальное падение составляет десятые и сотые доли вольта, для биполярных — может достигать единиц вольт, обычно около 0.7в. КПД линейных драйверов мал и обычно его не измеряют. Импульсный драйвер лазерного диода — частный случай импульсного преобразователя напряжения. Они преобразуют одно напряжение в другое(есть как повышающие,так понижающие и понижающе-повышающие преобразователи), т.е. входная мощность примерно равна выходной: потери энергии в тепло в них малы — тепло выделяется из-за неидеальности компонентов, т.е. падения напряжения на полупроводниковых переходах силовых ключей и диодов.

Читайте также:  Правильное питание от наталии

Как же работает импульсный драйвер? Посмотрим на упрощенную схему повышающего преобразователя:

В этом преобразователе ключ установлен после дросселя. Когда ключ замкнут, ток от источника протекает через дроссель L, ток через него увеличивается, в нём накапливается энергия. При размыкании ключа ток от источника течёт через дроссель L, диод D и нагрузку. Напряжение источника и ЭДС самоиндукции дросселя приложены в одном направлении и складываются на нагрузке. Ток постепенно уменьшается, дроссель отдаёт энергию в нагрузку. Пока ключ замкнут, нагрузка питается напряжением конденсатора C. Диод D не даёт ему разрядиться через ключ S.

Диод D может быть заменён на еще один ключ, замыкаемый в противофазе к основному ключу. Во многих случаях, особенно в низковольтных стабилизаторах, это позволяет увеличить КПД. Такую схему называют синхронным выпрямителем.

Дополнительную информацию о повышающем преобразователе можно прочитать по ссылке. Также существуют и другие топологии импульсных преобразователей.

Пример линейного драйвера — источник тока на операционном усилителе (по соображениям наглядности схема упрощена, но иллюстрирует смысл):

Про операционный усилитель и принцип его работы можно прочесть тут. Напряжение на резисторе R будет равно напряжению Vin, следовательно, ток, протекающий через ЛД, транзистор и токоизмерительный резистор будет равен отношению Vin к R при достаточном напряжении питания Vcc. Если подавать стабильное напряжение на Vin, то, следовательно ток в нагрузке тоже будет стабилен даже при изменении Vcc. Для этой цели обычно применяют либо слаботочный стабилизатор напряжения, либо стабилитрон, либо специальный источник опорного напряжения. Пример полноценной схемы: http://radiohlam.ru/raznoe/driver_svetodiodov_ou.htm

Пара слов о КПД

Как уже было сказано, КПД линейных драйверов мал и обычно его не измеряют. Рассмотрим измерение КПД импульсного драйвера. Все выглядит очень просто — измерить потребляемые и выходные токи и напряжения, посчитать КПД. Однако, как показывает практика, многие ошибаются уже на этом этапе. Самая частая ошибка новичков — измеряют ток и напряжение поочередно, не придавая значения тому факту, что при измерении тока мультиметром получаются ощутимые потери на проводах и на шунте, обладающих относительно большим сопротивлением. Это вносит значительную погрешность и в ток, и в напряжение (это происходит потому, что на входе драйвера напряжение будет меньше, чем до прибора, или на драйвере при неподключенном в разрыв цепи прибора, а т.к. драйвер импульсный, ток тоже будет отличаться).

Итак, чтобы правильно измерить параметры драйвера, нужно подключить его к источнику питания через низкоомный резистор, порядка 0.1Ом, такой же резистор включить последовательно с диодом. Далее следует все это включить и замерить напряжение на входе драйвера(после резистора), напряжение на резисторе, напряжение на диоде, напряжение на резисторе последовательно с диодом.Теперь найдем потребляемую драйвером мощность:
Pin=Uin * Ures/R,
где Uin- напряжение на входе драйвера, Ures — падение напряжения на резисторе, R — сопротивление резистора. Все напряжения в вольтах, сопротивление — в Омах. Теперь найдем выходную мощность:
Pout= (Uld + Ures)*Ures/R,
где Uld- напряжение на лазерном диоде, Ures — падение напряжения на резисторе, включенном последовательно с ЛД, R — сопротивление этого резистора. Теперь найдем КПД:
КПД= (Pout/Pin)*100%

Измерение тока через диод

Вернемся к измерению тока через диод. Если он питается от стабилизатора тока, достаточно включить в разрыв цепи между диодом и драйвером амперметр. Если же драйвер стабилизирует напряжение — то тут о токе можно судить лишь косвенно, именнов этом заключаетсяеще одначастая ошибка.
Нужно включить в разрыв цепи резистор как можно меньшего сопротивления, померить падение напряжения на нем и разделить на его сопротивление, но ток будет слегка занижен. Чем меньше взять сопротивление резистора — тем точнее результат. Точно можно измерить ток запомнив напряжение на ножках диода, запитав диод от стабилизатора или ограничителя тока и смотреть на ток в цепи, при котором будет то самое падение напряжения на диоде.

Источник