Меню

Двухполярное питание печатная плата



Двухполярное питание из однополярного источника напряжения

Как сделать двухполярное питание из однополярного источника: трансформатор с одной вторичной обмоткой

Двухполярное питание из однополярного. Хотел бы в этой статье рассказать как я сделал двухполярное питания используя при этом однополярное. Не так давно я для собственных нужд собрал пару усилителей мощности на микросхеме TDA7294, далее для них нужно было подогнать импульсник с двухполярным питанием.

Электронные компоненты для импульсного блока питания у меня были заготовлены не полностью, а собранные усилители протестировать хотелось уже сейчас. Силового транса с двумя вторичками, да еще и с необходимым мне напряжение, в моем загашнике конечно не нашлось.

Но зато у меня хранились на всякий случай пара мощных трансов, каждый только с одной вторичной обмоткой, и причем на разные напряжения. Вообщето у меня была своя задумка как выйти из этого положения исходя из наличия имеющихся деталей. Поэтому поискав в Интернете дополнительную информацию я начал делать схему, с помощью которой можно было бы с одной вторичной обмотки снять напряжение имеющее две разные полярности.

Конечно в устройстве, которое способно обеспечить двухполярное питание из однополярного, ничего сложного нет, но я думаю для начинающих радиолюбителей он будет полезна:

Необходимые электронные компоненты:

ОБОЗНАЧЕНИЕ ТИП НОМИНАЛ КОЛИЧЕСТВО КОММЕНТАРИЙ
VDS1,VDS2 Выпрямительный диодный мост Любой на нужное напряжение и ток 2 Распространенные KBU-610, KBU-810
C1,C5 Электролит 4700 мкФ 50В 2
C2,C6 Конденсатор неполярный 100 нФ 2 Пленка или керамика
C3,C4 Электролит 470 мкФ 100В 2

Предложенная в этой публикации схема электронного устройства для конвертирования двухполярного питания из однополярного работает только с переменным входным напряжением, входной постоянный ток для нее не приемлем. Принцип работы этого модуля заключается в том, чтобы получить от одной вторичной обмотки трансформатора переменное напряжение с двумя полярными значениями.


Диоды для выпрямителя выбирайте такие, чтобы выдерживали ток в 2,5 больше, чем максимальный ток потребления усилителя или любого другого устройства куда вы намерены его ставить. В моем распоряжении оказались плоские мостовые выпрямители KBL рассчитанные на ток 15А и напряжение 400V. Вот как на фото ниже:

Это конечно очень жирно, на этот усилитель ставить такие мощные мосты, но для проверки работоспособности аппарата пришлось ставить их. В дальнейшем я их конечно заменю, например, на 4 амперные RBA401У с напряжением 100v, такие мосты свободно обеспечат корректную работу усилителя. Вообщето сейчас выбор мостов большой, не только по электрическим параметрам, но и по типу корпуса.

В случае применения вами данного модуля на устройствах требующих напряжения питания больше 50v, тогда нужно будет установить электролиты C1 и C5 с напряжением соответствующему рабочему напряжению устройства, ну разумеется с запасом. Если у вас не под рукой емкостей с номиналом, который указан на схеме, то можно поставить четыре кондера по 2200µF, соединив параллельно по два в каждое плечо.

Конденсаторы C2,C6 можно ставить пленочные или керамические, отлично подходят высоковольтные конденсаторы с полипропиленовым диэлектриком, которые можно извлечь из ненужных блоков питания применяющихся в компьютере.


В качестве силового источника питания я использовал тороидальный трансформатор, имеющий только одну выходную обмотку с напряжением 30v и потребляемой мощностью мощностью немного больше 55V·A. В итоге, на концах выходной цепи выпрямителя получилось ±43v постоянного напряжения.


Во время тестирования усилителя я его нагрузил по полной, и мощность в нагрузке составила, где то 38W при падении напряжения 24v на максимальной мощности. Но в таком слишком большом падение, ясное дело, виноват маломощный трансформатор. Электронные компоненты установленные на печатной плате были абсолютно холодными.


Снимаем двухполярное питание с одной вторичной обмотки

В заключение хочу сказать, что такое устройство отлично работает, никаких нареканий к нему нет.

Файл печатной платы в формате .lay: Скачать Dvuhpolyarka

Источник

Двухполярный блок питания из готовых китайских модулей dc-dc step down LM2596

Заявлены довольно высокие параметры, а стоимость готового модуля меньше стоимости входящих в него деталей. Прельщают малые размеры платы.
Я решил приобрести несколько штук и испытать их. Надеюсь, мой опыт будет полезен не слишком опытным радиолюбителям.

Читайте также:  Грибы по способу питания могут быть ответ

Содержание / Contents

Я купил на Aliexpress модули LM2596, как на фото выше. Хотя на сайте были показаны твердотельные конденсаторы на напряжение 50 В, конденсаторы обычные, а половина модулей с конденсаторами на напряжение 16 В.

↑ Это трудно назвать стабилизатором.

Можно подумать, что достаточно взять трансформатор, диодный мост, подключить к ним модуль, и перед нами стабилизатор с выходным напряжением 3…30 В и током до 2 А (кратковременно до 3 А).

Я так и сделал. Без нагрузки всё было хорошо. Трансформатор с двумя обмотками по 18 В и обещанным током до 1,5 А (провод на глаз был явно тонковат, так оно и оказалось).
Мне нужен был стабилизатор +-18 В и я выставил нужное напряжение.

При нагрузке 12 Ом ток 1,5 А, вот осциллограмма, 5 В /клетка по вертикали.

Это трудно назвать стабилизатором.

Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.

↑ Борьба с пульсациями

↑ Увеличенная ёмкость на входе

Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.

Теперь можно смотреть пульсации на выходе импульсного преобразователя.

Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц.

↑ LC-фильтр на выходе

На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.

Посмотрим, что стало с ВЧ-пульсациями.

Их больше нет. Остались небольшие пульсации с частотой 100 Гц.
Неидеально, но неплохо.

Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.

↑ Итоговая схема включения модулей LM2596

При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.

При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.

↑ Монтаж

Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.

Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

↑ Выводы

1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.

2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.

3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.

4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.

5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.

6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.

↑ Файлы

Файл печатной платы в формате lay.
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Источник

Двухполярный блок питания

Двухполярный блок питания внешний вид монтажа которого показан на рисунке.

Читайте также:  Система питания сжатым воздухом

Технические характеристики:

  • Регулируемые выходные напряжения 1,2 … 25 В постоянного тока
  • максимальный длительный выходной ток: 2 ✕ 1,5A
  • индикаторы выходного напряжения – светодиоды
  • защита от короткого замыкания и тепловая защита
  • размеры платы: 45 ✕ 81 мм

Двухполярный блок питания схема которого классическая, выходное напряжение устанавливается с помощью потенциометров PR1 и PR2.

LM317 – используется как положительный стабилизатор напряжения, а LM337 – стабилизирует отрицательное напряжение.

Для стабилизаторов LM требуется небольшое количество рассыпухи и еще они имеют встроенную тепловую защиту, а также ограничение тока при коротком замыкании. Диапазон выходного напряжения составляет от ± 1,25 В до ± 25 В. Микросхемы LM317 и LM337 имеют встроенную кратковременную защиту от короткого замыкания. При выборе трансформатора обратите внимание на номинальное напряжение конденсаторов C1, C2. Трансформатор должен быть выбран таким образом, чтобы его вторичное напряжение после выпрямления не превышало номинальное напряжение конденсаторов.

Печатная плата двухполярный блок питания показана на рисунке.

Сборка не представляет особого труда, а последние установленные элементы должны быть конденсаторы C1, C2, сразу после установки микросхем на радиатор. Стабилизаторы US1 и US2 должны быть изолированы от радиатора с помощью слюды или силиконовой прокладки. Схема собранная из заведомо исправных элементов, не требует какой-либо регулировки, и после подключения трансформатора работает сразу же.

Источник

ДВУПОЛЯРНЫЙ РЕГУЛИРУЕМЫЙ БП ИЗ ОДНОПОЛЯРНОГО

При наличии у вас лабораторного блока питания с возможностью регулировки выходного напряжения и тока, и защитой от КЗ и перегрузки на выходе, можно дополнить его такой «приставкой». Тогда на выходе можно получить не только однополярное, но и двуполярное регулируемое напряжение. При этом сохранятся все «родные» функции БП — возможность регулировки тока и напряжения и защита по выходу.

Но следует учесть, что значения двуполярного выходного напряжения будут равны половинным значениям «базового». То есть, если ваш БП выдаёт, например, от 0 до 30 вольт на выходе, то выходное напряжение двуполярного варианта будут, соответственно, иметь величину от 0 до +/- 15 вольт (чуть меньше с учётом потерь). При этом будет автоматически обеспечено стабильное равенство напряжений плюсового и минусового «плечей» во всём диапазоне регулировок выходного напряжения.

Схема приставки к блоку питания

Схема простейшая, не требует специального подбора элементов и сложных настроек. Её может собрать любой, даже начинающий радиолюбитель из того, что буквально «есть под рукой».

Данная схема — не моё изобретение. Она была найдена несколько лет назад на просторах инета. К сожалению, у меня не осталось информации об её авторстве, поэтому не могу дать ссылку на первоисточник. Но есть фрагмент текста, описывающий устройство и принцип работы схемы, который привожу ниже (с учётом обозначений элементов на моей, приведённой здесь схеме):

«Операционный усилитель OP1 измеряет разницу напряжений в средней точке делителя напряжения R1 — R2, Rрег с напряжением на «корпусе» и реагирует на их разницу увеличивая, или уменьшая выходное напряжение.

При подаче питания на устройство, происходит заряд конденсаторов С1 и С2 по пути «+» источника питания, конденсатор С1, конденсатор С2, «-» источника питания. Таким образом, каждый конденсатор зарядится половинным входным напряжением. Эти напряжения и будут на выходе устройства. Но это будет наблюдаться при сбалансированной нагрузке.

Рассмотрим случай, когда к устройству подключена несбалансированная нагрузка – например, сопротивление нагрузки в цепи положительного выходного напряжения намного меньше сопротивления нагрузки подключенной к цепи отрицательного выходного напряжения. Так как параллельно конденсатору С1 подключена цепь нагрузки – диод VD1 и малое сопротивление нагрузки, то заряд конденсатора С2 будет проходить не только через С1, но и по параллельной ему цепи — диод VD1, малое сопротивление нагрузки. Это приведёт к тому, что конденсатор С2 будет заряжаться большим напряжением, чем конденсатор С1, что в свою очередь приведёт к тому, что положительное выходное напряжение будет меньше отрицательного.

На корпусе устройства напряжение возрастёт по потенциалу относительно средней точки резисторов R1 — R2, Rрег, где потенциал равен половине входного напряжения. Это приведёт к появлению на выходе операционного усилителя отрицательного напряжения относительно корпуса устройства. И чем больше будет разница потенциалов на входе операционного усилителя, тем больше будет отрицательное напряжение.

Читайте также:  Система питания шаталовой меню

В результате отрицательного напряжения на выходе ОУ, транзисторы VT1 и VT2 откроются и подобно цепи «диод VD1, малое сопротивление нагрузки» в положительной цепи, создаст шунтирующее действие на конденсатор С2 в отрицательной цепи. Это в свою очередь приведёт к уравновешиванию токов в положительной и отрицательной цепях и выровняет выходные напряжения. В случае разбалансировки нагрузки устройства в сторону отрицательного напряжения открываются транзисторы VT1 и VT2.

Таким образом, за счёт схемы автоматического контроля за потенциалом «нуля», осуществляется его балансировка в «среднее состояние» между плюсом и минусом питания.»

Используемые в схеме детали

В качестве операционного усилителя можно использовать микросхемы К140УД6, К140УД7, К140УД601, К140УД701 или зарубежные аналоги (с учётом их другой цоколёвки).

Резисторы в эмиттерных цепях транзисторов нужны для выравнивания токов транзисторов и ограничения их бросков в моменты переключения. При небольших тока нагрузки достаточно будет использовать один выходной каскад, тогда эти резисторы в эмиттерных цепях можно исключить. При значительной нагрузке (до 10 А и выше) следует использовать параллельное включение транзисторов (показано на схеме зелёным цветом). Номинал этих резисторов может быть от 0,05 до 0,2 Ом при мощности не менее 5 ватт (зависит от мощности и тока нагрузки). Все остальные резисторы в схеме — типа МЛТ0,25.

Транзисторы можно использовать типов: КТ805/КТ837, КТ819/КТ818, КТ827/КТ825 или аналогичные импортные. Диоды VD1 и VD2 предназначены для исключения шунтирования транзисторами устройства цепей нагрузки. Они могут быть типа КД226, КД210, КД237 и другие, в зависимости от максимального тока нагрузки.

Транзисторы устанавливают на теплоотводы достаточного размера. Размеры теплоотводов определяются только тем, насколько нагрузка будет не сбалансирована. Чем больше не сбалансирована, тем больше площадь радиаторов.

Настройки этот делитель однополярного напряжения не требует, правильно собранная схема начинает работать сразу. Резистор Rрег предназначен для установки равенства выходных двухполярных напряжений.

В случае появления «биений» выходного напряжения в результате возбуждения и самогенерации, необходимо уменьшить значение резистора R4, увеличив при этом значение обратной отрицательной связи.

Микросхема ОУ может быть ограничена по питанию до 15 вольт в «плече» (в зависимости от её типа), поэтому для получения бОльших выходных напряжений необходимо подключать питание к выводам 4 и 7 через добавочные сопротивления и соответствующие стабилитроны, но при этом возрастёт и нижний уровень выходных напряжений. Стабилитроны следует зашунтировать конденсаторами порядка 0,1. 1,0 мкФ.

В некоторых микросхемах ОУ предусмотрена возможность регулировки баланса нуля выходного напряжения с помощью внешнего подстроечного резистора. Но при изменении напряжения входного питания, будет необходима его подстройка, поэтому в данной схеме эта функция не используется.

Схема стабилизатора была собрана и испытана на практике. При всей своей простоте обеспечивает хорошие показатели и надёжность, не занимает много места и может быть размещена в корпусе вашего «исходного» однополярного БП. При этом для нормальной работы БП в однополярном режиме, следует предусмотреть переключатель S1 для отключения двуполярной приставки, чтобы она не оказывала никакого влияния на него. Также, на выходе основного БП полезно будет поставить дополнительный предохранитель F1 на ток, соответствующий максимально возможному току двуполярной нагрузки.

Конструкция устройства

Следует учесть, что выход GND приставки является «искусственной средней точкой», поэтому он не должен контактировать с «общим» проводом исходного БП (!) — обычно это «-» питания.

На фото приведён пример моей конструкции. Схема собрана на печатной плате размерами 55 х 30 мм и установлена в корпусе «основного» (однополярного) БП. Корпус от компьютерного блока питания имеет компактные размеры, поэтому монтаж получился довольно плотным. Однако на работу как основного блока, так и «приставки» это не оказало никакого влияния. Транзисторы выведены на проводах небольшой длины (порядка 60. 80 мм) и закреплены на свободном месте основного теплоотвода через изоляционные прокладки. Переключатель S1 выведен на переднюю панель БП (тумблер). Предохранитель F1 установлен на боковой стенке справа. Автор статьи: Барышев Андрей Владимирович.

Источник