Меню

Esp8266 как подключить питание

Модуль Wi-Fi ESP8266 (ESP-01): подключение, распиновка, прошивка в IDE

Модуль ESP-01 с чипом ESP8266 предназначен для связи устройства с беспроводными сетями по WiFi.

Видеообзор

Общие сведения

ESP-01 — плата-модуль WiFi на базе популярного чипсета ESP8266EX . На борту платы находится микросхема Flash-памяти объёмом 2 МБ, чип ESP8266EX, кварцевый резонатор, два индикаторных светодиода и миниатюрная антенна из дорожки на верхнем слое печатной платы в виде змейки. Flash-память необходима для хранения программного обеспечения. При каждом включении питания, ПО автоматически загружается в чип ESP8266EX.

По умолчанию модуль настроен на работу через «AT-команды». Управляющая плата посылает команды — Wi-Fi модуль выполняет соответствующую операцию.

Но внутри чипа ESP8266 прячется целый микроконтроллер, который является самодостаточным устройством. Прошивать модуль можно на разных языках программирования. Но обо всё по порядку.

Работа с AT командами

Подключение и настройка

В стандартной прошивке Wi-Fi модуль общается с управляющей платой через «AT-команды» по протоколу UART.

На всех платах Iskra и Arduino присутствует хотя бы один аппаратный UART — HardwareSerial. Если же по каким то причинам он занят другим устройством, можно воспользоваться программным UART — SoftwareSerial.

HardwareSerial

На управляющей плате Iskra JS и платах Arduino с микроконтроллером ATmega32U4 / ATSAMD21G18 данные по USB и общение через пины 0 и 1 осуществляется через два раздельных UART . Это даёт возможность подключить Wi-Fi модуль к аппаратному UART на пинах 0 и 1 .

Список поддерживаемых плат:

Для примера подключим модуль Wi-Fi к платформе Iskra Neo.

Прошейте управляющую платформу кодом ниже.

Код прошивки

SoftwareSerial

Некоторые платы Arduino, например Uno, прошиваются через пины 0 и 1 . Это означает невозможность использовать одновременно прошивку/отладку по USB и общение с Wi-Fi модулем. Решение проблемы — программный UART . Подключите пины TX и RX ESP-модуля к другим контактам управляющей платы и используйте библиотеку SoftwareSerial.

Для примера подключим управляющие пины Wi-Fi модуля TX и RX — на 8 и 9 контакты управляющей платы. Прошейте управляющую платформу кодом ниже.

Код прошивки

HardwareSerial Mega

На платах форм-фактора Arduino Mega 2560 аппаратный UART, который отвечает за передачу данных через пины 1 и 0 , отвечает также за передачу по USB. Это означает невозможность использовать одновременно UART для коммуникации с Wi-Fi модулем и отладки по USB.

Но на платах такого форм-фактора есть ещё дополнительно три аппаратных UART:

Список поддерживаемых плат:

Подключите Wi-Fi модуль к объекту Serial1 на пины 18 и 19 на примере платы Mega 2560 Прошейте управляющую платформу кодом ниже.

Код прошивки

Примеры работы

Рассмотрим несколько примеров по работе с «AT-командами»

Тестовая команда «AT»

Откройте монитор порта. Настройте скорость соединения — 9600 бод. Конец строки — NL & CR . Введите команду AT и нажмите «Отправить». Это — базовая команда для проверки работы Wi-Fi модуля. В ответ получим «OK»: Если ответа нет или появляются непонятные символы — проверьте правильность подключения и настройки скорости обмена данными.

Читайте также:  Питание холангит у кошек

Настройка режима работы

Wi-Fi модуль умеет работать в трёх режимах:

Переведём чип в смешанный режим командой:

После установки модуль должен ответить «OK»:

В отличии от аппаратного UART (HardwareSerial), за работу программного UART (SoftwareSerial) отвечает микроконтроллер, который назначает другие пины в режим работы RX и TX , соответственно и данные которые приходят от Wi-Fi модуля обрабатывает сам микроконтроллер во время программы. По умолчанию скорость общения Troyka Wi-Fi равна 115200 , что значительно выше чем позволяет библиотека SoftwareSerial. В итоге часть информации которая приходит с Wi-Fi модуля будет утеряна. Если вы используете плату с HardwareSerial подключением модуля можете пропустить пункт настройки скорости и сразу перейти к дальнейшей работе с модулем.

AT установка скорости общения

Для корректной работы с большими объемами необходимо понизить скорость соединения модуля и микроконтроллера. Для этого используйте «AT-команду»:

После проделанной операции, измените скорость программного UART в скетче программы и прошейте плату.

По итогу программный UART успеет обработать каждый пришедший байт с Wi-Fi модуля.

AT сканирование WI-FI сетей

Откройте Serial-порт и отправьте на модуль «AT-команду» для сканирования всех доступных Wi-Fi сетей:

При наличии доступных WI-FI сетей в ответ получим сообщение:

Для продолжение работы используйте перечень «AT-команд»

Wi-Fi модуль как самостоятельный контроллер

ESP-01 (ESP8266) — очень умный модуль. Внутри чипа прячется целый микроконтроллер, который можно программировать на языке C++ через Arduino IDE и JavaScript через Espruino Web IDE .

Настройка железа

Ввиду отсутствия у платформы ESP-01 собственного USB-порта, понижающего преобразователя и отсутствия толерантности к 5 вольтам, подключите её к компьютеру, используя один из перечисленных способов:

Схема через Arduino Uno

Для сборки программатора понадобится:

Необходимо каждый раз выполнять перед прошивкой модуля.

Схема через USB-Serial адаптер

Для сборки программатора понадобится:

Необходимо каждый раз выполнять перед прошивкой модуля.

Программирование на C++

После выполненных действий модуль ESP-01 готов к программированию через Arduino IDE.

Подробности о функциях и методах работы ESP-01 (ESP8266) на языке C++ читайте на ESP8266 Arduino Core’s.

Программирование на JavaScript

После выполненных действий модуль ESP-01 готов к программированию через Espruino Web IDE.

Подробнее о функциях и методах работы ESP8266 на языке JavaScript читайте на Espruino.

Восстановление стандартной АТ-прошивки

После программирования платформы в режиме самостоятельного контроллера может понадобиться восстановить на модуле стандартную AT-прошивку. Для этого необходимо воспользоваться утилитой Flash Download Tool.

Элементы платы

Чип ESP8266EX

Чип ESP8266 — выполнен по технологии SoC (англ. System-on-a-Chip — система на кристалле). В основе кристалла входит процессор семейства Xtensa — 32-х битный Tensilica L106 с частой 80 МГц с ультранизким энергопотреблением, радиочастотный трансивер с физическим уровнем WiFi IEEE 802.11 b/g/ и блоки памяти SRAM. Мощности процессорного ядра хватает для работы сложных пользовательских приложений и цифровой сигнальной обработки.

Читайте также:  Скороговорки про продукты питания

Программное приложение пользователя должно храниться на внешней микросхеме Flash-памяти и загружаться в ESP8266EX через один из доступных интерфейсов (SPI, UART, SDIO и др.) каждый раз в момент включения питания системы.

Чип ESP8266 не содержит в себе Flash-память и многих других компонентов для пользовательского старта. Микросхема является основой на базе которой выпускаются модули с необходимой периферией, например ESP-01.

Светодиодная индикация

Имя светодиода Назначение
LED Индикаторный светодиод подключённый к цифровому пину 1
POWER Индикатор питание на модуле

Распиновка

Пины питания

Пины ввода/вывода

В отличии от большинства плат Arduino, родным напряжением платформы ESP-01 является 3,3 В, а не 5 В. Выходы для логической единицы выдают 3,3 В, а в режиме входа ожидают принимать не более 3,3 В. Большее напряжение может повредить модуль!

Будьте внимательны при подключении периферии: убедитесь, что она может корректно функционировать в этом диапазоне напряжений.

Источник



Стабилизатор напряжения для микроконтроллера ESP8266

Следуя этому руководству вы создадите стабилизатор напряжения для микроконтроллера ESP8266, который можно будет использовать с литий-полимерными и литий-ионными аккумуляторами.

Потребление энергии микроконтроллером ESP8266

Хорошо известно, что микроконтроллер ESP8266 довольно прожорлив во время работы интерфейса Wi-Fi. Он может потреблять от 50 мА до 170 мА. Во многих случаях трудно применять такое устройство совместно с аккумулятором.

Лучше подойдёт блок питания, подключённый к электросети, чтобы не приходилось волноваться о потреблении энергии или зарядке аккумуляторов.

Использования ESP8266 совместно с LiPo/Li-ion аккумуляторами

Однако для некоторых проектов с микроконтроллером ESP8266, где используется режим глубокого сна и нет необходимости в постоянной работе интерфейса Wi-Fi, применение перезаряжаемых литий-полимерных аккумуляторов станет прекрасным решением.

Если используется питания от аккумуляторов рекомендуется плата ESP-01, так как на ней установлено небольшое количество компонентов.

Платы, подобные ESP8266 NodeMCU, используют много энергии, поскольку оснащены дополнительными элементами, такими как резисторы, конденсаторы, микросхемы и т. д.

Так как литий-полимерные аккумуляторы широко распространены, покажем как обеспечить питание микроконтроллера ESP8266 с их помощью.

В этом руководстве не объясняется как устроены и работают различные типы аккумуляторов. Здесь даётся лишь информация необходимая для реализации описываемой схемы.

LiPo/Li-ion аккумуляторы полностью заряжены

Полностью заряженный аккумулятор имеет на выходе напряжение 4,2 В

Со временем оно снижается.

Рекомендуемое рабочее напряжение микроконтроллера ESP — 3,3 В, но он может функционировать в диапазоне 3—3,6 В. Так что нельзя просто подключить литий-полимерный аккумулятор напрямую к микроконтроллеру ESP8266 — вам потребуется стабилизатор напряжения.

Стандартный линейный стабилизатор напряжения

Использование стандартного линейного стабилизатора для снижения напряжения с 4,2 до 3,3 В — не очень хорошее решение.

Например: если аккумулятор разрядится до выходного напряжения 3,7 В, ваш стабилизатор перестанет работать, так как у него высокое напряжение отсечки

Стабилизатор с малым падением напряжения или LDO-стабилизатор

Чтобы эффективно понизить напряжение аккумулятора, вам необходим стабилизатор с малым падением напряжения известный также как LDO-стабилизатор, который может регулировать выходное напряжение.

Малое падение напряжения означает, что даже если аккумулятор будет выдавать лишь 3,4 В, стабилизатор всё рано продолжит работать. Помните, что никогда не стоит полностью разряжать литий-полимерный аккумулятор, так как это повредит его или сократит срок службы.

Один из самых лучших LDO-стабилизаторов – MCP1700-3302E.

Он довольно компактный и выглядит как транзистор.

Есть также хороший вариант в виде HT7333-A.

Любой LDO-стабилизатор с характеристиками, аналогичными приведённым в документе ниже, также является хорошим вариантом. Ваш LDO-стабилизатор должен иметь такие же показатели для следующих параметров:

  • Выходное напряжение (3,3 В).
  • Ток в рабочей точке (

1,6 мкА).
Выходной ток (

250 мА).
Малое падение напряжения (

Назначение выводов стабилизатора MCP1700-3302E

Назначение выводов стабилизатора MCP1700-3302E. Есть выводы GND, Vin и Vout (земля, вход и выход):

У других LDO-стабилизаторов должно быть такое же назначение выводов, но обязательно найдите техническое описание вашего стабилизатора, чтобы проверить это.

Схема подключения ESP8266, стабилизатора и литий-полимерного аккумулятора

Для стабилизатора нам понадобятся следующие компоненты:

Внимательно ознакомившись со схемой вы сможете самостоятельно собрать стабилизатор.

Или посмотрите схему, созданную с помощью ПО Fritzing (керамический и электролитический конденсатор подключены параллельно выводам GND и Vout стабилизатора).

Кнопка подключена к выводу RESET (СБРОС) платы ESP-01, сейчас в этом нет необходимости, однако это пригодится в будущих руководствах.

Предназначение конденсаторов

Для LDO-стабилизаторов необходимо подключать керамический и электролитический конденсатор параллельно выводам GND и Vout, для сглаживания скачков напряжения. Конденсаторы не допускают неожиданный перезапуск и нестабильную работу микроконтроллера ESP8266.

Испытания стабилизатора напряжения

Давайте подключим питание к схеме и проверим её. Измеряя мультиметром входное напряжение Vin от литий-полимерного аккумулятора, вы сможете увидеть приблизительно 4,2 В, поскольку сейчас аккумулятор полностью заряжен.

Теперь подключим щуп мультиметра к выводу Vout. Мультиметр показывает приблизительно 3,3 В — это рекомендуемое напряжение для микроконтроллера ESP8266.

Ещё один вариант стабилизатора напряжения

Вы припаиваете конденсаторы к LDO-стабилизатору, так что получается стабилизатор напряжения в компактном исполнении, который можно легко применить в ваших проектах.

Надеемся, это руководство было полезным. Эта схема очень пригодится для питания в будущих проектах.

Источник