Меню

Как поменять полярность питания



Как поменять полярность питания

Как изменить полярность блока питания?

В большинстве высоковольтных блоков питания для создания необходимого выходного напряжения применяются так называемые умножители напряжения. Основная схема умножителя показана ниже на упрощенной принципиальной схеме блока питания:

Схема умножителя состоит из конденсаторов и диодов, расположенных в определенном порядке. Полярность на выходе блока определяется ориентацией диодов. В вышеприведенном примере диоды должны создавать на выходе положительную полярность относительно земли. Если поменять ориентацию всех диодов, умножитель будет выдавать отрицательное напряжение относительно земли.

В вышеприведенном примере показан двухступенчатый однополупериодный умножитель, в котором используются четыре диода. Двухполупериодные каскады умножителей более эффективны, в них используются дополнительные конденсаторы и в два раза больше диодов. Для создания высоких напряжений, таких как в блоках питания Spellman, последовательно соединяют большое количество каскадов умножения. 12-каскадный двухполупериодный умножитель будет содержать 48 диодов.

Как правило, используемые для сборки умножителей конденсаторы и диоды впаяны прямо в одну, а иногда в несколько печатных плат. Часто в целях изоляции от высоких напряжений такие платы заключаются в оболочку – заливаются компаундом.

Для упрощения процедуры изменения полярности на противоположную (как в экземпляре серии SL) при напряжениях выше 8 кВ предусмотрен второй умножитель – «противоположной полярности». Процесс замены умножителя не представляет трудностей, необходимы лишь отвертка и несколько минут времени. Из-за упрощенной конструкции блоков в модульном исполнении они, как правило, не допускают изменения полярности прямо на месте эксплуатации.

Источник

Что такое переполюсовка аккумулятора и как её сделать

Автомобильные АКБ выполняют несколько задач, поставленных перед ними. Основная функция заключается в обеспечении запуска двигателя. Также батарея может выступать источником питания для разных потребителей, таких как магнитола, подключённый к прикуривателю автопылесос, компрессор и пр.

При старте ДВС АКБ теряет часть своего заряда. Компенсируется он за счёт подпитки от генератора при работе двигателя во время поездок. Если этого недостаточно, аккумуляторы снимают и подзаряжают на специальных устройствах (ЗУ).

Под влиянием различных факторов, включая естественный износ, аккумулятор теряет ёмкость. Случается так, что падение ёмкости связано с выпадением осадка сульфата свинца на поверхностях пластин. Такой процесс называют сульфатацией. Одним из решений такой проблемы может стать переполюсовка.

Зачем нужна переполюсовка

Представьте ситуацию, когда при подключении зарядного устройства к АКБ она буквально через несколько минут начинает кипеть. При этом разряд происходит буквально от незначительного потребителя. Не всегда удаётся даже запустить двигатель.

Когда проверка состояния электролита показывает, что он прозрачный, отсутствуют мутные следы, но на свинцовых пластинах формируются отложения в виде белого налёта, вывод очевиден. Это сульфатация.

Осадок не растворяется, он не позволяет ионам подходить к пластинам, чтобы зарядить АКБ.

Чтобы выйти из сложившейся ситуации, можно выбрать 2 пути. Это утилизация АКБ либо попытка её восстановления.

Реанимировать батарею, которая столкнулась с сульфатацией, можно с помощью переполюсовки автомобильных аккумуляторов.

Использовать переполюсовку, то есть изменение полярности клемм при зарядке АКБ, рекомендуется только в крайних случаях, когда другие меры не помогают.

Суть переполюсовки достаточно простая. Нужно поменять местами соединения клемм между аккумулятором и зарядным устройством. Плюс идёт на минус, а минус соединяется с плюсом.

Переполюсовка ведёт к тому, что на свинцовые пластины поступает положительный заряд, а на диоксид свинца идут отрицательные заряды.

Недорогие АКБ отличаются тем, что у них толщина пластин незначительная, что может привести к их разрушению. При переполюсовке можно столкнуться с некоторыми негативными последствиями. Поэтому будьте предельно аккуратными, планируя провести подобное мероприятие.

Как это делается

Теперь немного подробнее о том, как правильно сделать переполюсовку на аккумуляторе и что следует знать о проведении этой процедуры.

Обязательно выбирается хорошо проветриваемое помещение либо помещение с принудительной вентиляцией. Весь процесс следует строго контролировать, не оставляя батарею без внимания.

Перед началом операции пробки с банок нужно обязательно снять. Пары, выделяющиеся при возникновении реакции, имеют взрывоопасный характер.

Если вы решили сделать переполюсовку для своей АКБ, строго придерживайтесь правил пожарной безопасности и индивидуальной защиты.

Сама переполюсовка для аккумулятора от автомобиля правильно выполняется в такой последовательности.

  • Сначала нужно разрядить аккумулятор полностью, используя внешнее сопротивление. Обязательно убедитесь в том, что АКБ разряжена. Для перестраховки можно перемкнуть контакты.
  • Теперь батарея соединяется с зарядным устройством. Только тут следует поменять привычную полярность.
  • Красный провод, то есть плюс, соединяется с минусовой клеммой аккумулятора. А чёрный минус идёт на плюсовую клемму АКБ.
  • Напряжение устанавливается в диапазоне от 14,2 до 14,8 В при токе 2 А.
  • Аккумулятор после этого начнёт постепенно заряжаться, а температура внутри банок возрастать.
  • Следите за тем, чтобы нагрев не доходил выше отметки 60 градусов Цельсия. Делать это можно с помощью снижения тока и параметров напряжения.

Если переполюсовка для аккумулятора вашего автомобиля будет выполнена правильно, произойдёт процесс, обратный сульфатации. То есть нерастворимый осадок начнёт постепенно разрушаться, плотность электролита увеличиваться. По завершению процедуры на ареометре можно увидеть вполне рабочие показатели, а пластины станут чистыми.

В качестве внешнего сопротивления, когда выполняется переполюсовка путём изменения полярности АКБ от автомобиля, можно использовать обычную лампочку.

Завершив переполюсовку, требуется оставить АКБ для полного восстановления ёмкости на зарядном устройстве.

Двойной переполюсовкой называют процесс, при котором снимается первый заряд сопротивлением, АКБ снова заряжают, но уже при правильном положении клемм. То есть применяется нормальная полярность, когда плюс идёт на плюс, а минус соединяется с минусом.

Если всё сделать грамотно, тогда батарея после восстановления сможет прослужить ещё не один год. Но прибегать к таким мерам следует лишь в том случае, когда никакие другие методы уже не помогают, а на покупку нового аккумулятора денег нет.

В чём опасность процедуры

Некоторые автомобилисты, узнав о таком методе восстановления старых и изношенных АКБ, подверженных сульфатации, сразу же спешат переполюсовать батарею.

Но спешить точно не стоит. Следует напомнить, что это крайняя мера, которая не всегда даёт положительный результат.

Бывает и так, что переполюсовка проводится случайно. Чаще всего это встречается при прикуривании от другого автомобиля. В этом случае, перепутав провода-крокодилы местами, батареи соединятся последовательно, и напряжение возрастёт до 24 В. Это может привести к:

  • короткому замыканию;
  • ожогам рук;
  • возгораниям;
  • взрыву АКБ, у которой меньшая мощность;
  • отказу электронного блока управления;
  • сгоранию диодного моста и пр.

На современных автомобилях предусмотрена защита от случайной переполюсовки для АКБ и бортовой сети.

Что же касается обычной переполюсовки, когда АКБ соединяется с зарядным устройством, то здесь возможно несколько вариантов. Если пластины не осыпались и короткого замыкания на них нет, всё пройдёт нормально.

Когда АКБ не предназначена для таких процедур, ей противопоказана смена полюсов, тогда произойдёт отказ, может повредиться не только батарея, но и само зарядное устройство. Также пострадает сам человек, находящийся рядом. Не исключается разрыв корпуса, выход наружу электролита, являющегося по своей сути разбавленной, но очень опасной серной кислотой.

На каких АКБ можно проводить

Сульфатация проявляется в виде накапливания твердого белого осадка на пластинах. Есть разные способы его удаления. И крайним решением считается переполюсовка.

Ни в коем случае не применяйте такой метод, если уровень электролита в батарее снижен. Сначала нужно долить жидкость.

Приведём примеры того, в каких случаях можно, а когда нельзя проводить подобные мероприятия по восстановлению аккумуляторных батарей, в зависимости от их типа.

  • Старые свинцово-кислотные устройства. Речь идёт о конструкциях старого образца, а не о сроке их службы. В таких АКБ применяются свинцовые пластины достаточно большой толщины. Они лучше остальных выдерживают нагрузку при смене полярности.
  • Новые свинцово-кислотные обслуживаемые АКБ. Здесь толщина пластин уже значительно меньше. Потому они могут начать разрушаться раньше, чем сам белый налёт, образовавшийся при сультфатации. Здесь проводить смену полярности не рекомендуется. Либо следует внимательно контролировать процесс, подавая минимальный ток.
  • Необслуживаемые кальциевые батареи. Для чистки таких аккумуляторов используют импульсные токи. Результат получается довольно хорошим. Переполюсовывать их категорически запрещено. Нельзя допускать, чтобы происходил глубокий заряд, а сам электролит кипел.
  • Литиевые АКБ. Очень требовательные к условиям эксплуатации и обслуживанию. Перенапряжение и сильный разряд такие аккумуляторы не выдерживают. В них предусмотрен контроллер защиты, и при необходимости он активирует блокировку. Такие АКБ вовсе не сталкиваются с сульфатацией. Делать переполюсовку запрещено.

В итоге получается, что изменить полярность получится только на обслуживаемой аккумуляторной батарее свинцово-кислотного типа, у которой используются достаточно толстые свинцовые пластины. Но даже для них такая процедура потенциально опасная.

Все остальные виды АКБ для переполюсовки не подходят.

Источник

Как на плате определить полярность конденсатора: Замена конденсаторов на мат.плате и в блоке питания – Определение полярности электролитического конденсатора по внешнему виду

Электрические конденсаторы – это устройства двухполюсники, предназначенные для накопления заряда и энергии электрического поля. Они представляют собой компоненты любой импульсной, либо электронной схемы. Деталь состоит из двух обкладок, между которыми находится диэлектрик. Толщина последнего несколько меньше самих пластин. Емкость измеряется в Фарадах.

Многие виды конденсаторов не имеют полярности. Именно поэтому при подключении возникает вопрос — как определить полярность электролитического конденсатора.

По маркировке

У отечественных электролитов концы расположены в разных сторонах устройства, либо на одной стороне. На корпусе прибора изображают знак «плюс». Определить, какой конец является частью анода можно, посмотрев на расположение «плюса». К какому выводу он изображен ближе, тот конец и относится к аноду. Старые образцы приборов чешского производства имеют точно такое же обозначение.

Устройства типа К50-16 изготовлены из пластмассы. На них уже указана информация о полярности. Однако иногда знаки «+» и «—» расположены таким образом, что концы пересекают их центры.

Некоторые устройства имеют нестандартную конструкцию, предусматривающую соединение с шасси. Их используют в качестве элементов для осветительных ламп. Катод этих приборов подключается отрицательно и выведен на корпус, в то время как анод выходит из элемента.

Существует серия конденсаторов ЭТО. Некоторые путают их с диодами. Эти приборы маркируются, но иногда обозначения стираются. Что определить местоположение анода, нужно посмотреть на вывод, который выходит из утолщения корпуса.

Полярность конденсаторов, выпускаемых сегодня, определяют по полосе рядом с выводом «минус». Обозначение изображено краской и выглядит как прерывистая линия.

Как определить полярность конденсатора, если маркировка стерта? Конденсатор разряжают и замыкают его ножки отверткой. К устройству подсоединяют батарейку, резистор, микроамперметр и милливольтметр. На схему подают напряжение. Конденсатор начинает накапливать заряд.

Когда зарядка закончится, фиксируют показания прибора по измерению тока. Конденсатор разряжают. Для этого два выхода подсоединяют к лампе. Если она гаснет – прибор разрядился.

Схему собирают повторно и заново снимают показания. Данные первого измерения сравнивают со вторым. Если «плюс» был соединен с «плюсом» милливольтметра, то сведения не будут отличаться друг от друга. Противоположный итог свидетельствует о том, что полярность установлена неверно.

Электролит теряет емкость, если заряжается от источника 9-12 Вт. Такой элемент для сборки схемы не используют, иначе прибор сломается.

Что будет, если перепутать полярность конденсатора?


Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя!

Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток.

Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус.

Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе.


Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу.

Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме.

Читайте также:  Калорийность продуктов питания таблица калорийности сало

Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Как правильно заменить неисправные конденсаторы при ремонте материнской платы компьютера можно прочитать здесь.

Обозначение плюса конденсатора

Положительный контакт на изделиях, изготовленных в СССР, обозначали знаком «+». Он располагался на корпусе около плюсового выхода. Знак также рисовали на печатной плате, которая находилась рядом с положительным выводом.

На устройства серии К50-16 наносили полярность на пластмассовое дно. Модель К50-6 имела маркировку на нижней части корпуса, состоящего из алюминия. Такую же маркировку имеют изделия, произведенные в странах бывшего советского союза.

Как узнать полярность конденсатора Surface Mounted Device? Прибор предназначен для поверхностного монтажа. Плоские изделия оснащены корпусом черного, либо коричневого цвета. Корпус выглядит как небольшая прямоугольная пластина. Рядом с положительным выводом располагается серебристая полоса со знаком «плюс».

Конденсаторы модели «ЭТО» не всегда содержат какие-либо обозначения. В этом случае смотрят на форму детали. Положительный вывод находится со стороны, имеющий большой диаметр.

Высоковольтные конденсаторы

В высоковольтных устройствах (умножителях напряжения, генераторах Маркса, катушках Тесла, мощных лазерах и т.п.) применяют высоковольтные конденсаторы, отличающиеся по конструкции от низковольтных. Они используются в схемах с напряжением более 1600 В. Некоторые разновидности высоковольтных электронных устройств:

  • К75-25 – импульсные модели, используемые в схемах с напряжением до 50 кВ. Их емкость – 2-25 нФ. Благодаря возможности работать с токами частотой 500 Гц, эффективны в искровых катушках Тесла.
  • К15-4. Этот тип конденсатора можно определить по корпусу цилиндрической формы зеленого цвета. Имеют небольшую емкость и используются в генераторах Маркса, старых телевизорах, умножителях напряжения и других высоковольтных низкочастотных схемах.
  • К15-5. Керамические детали кирпичного цвета, компактных габаритов, дисковой формы. Максимальное напряжение – 6,3 кВ, используются в высокочастотных фильтрах.

Обозначение минуса

Отрицательный контакт устанавливают на корпусе изделия по-разному. Определить его можно, обратив внимание на определенные знаки или цвет устройства.

Если устройство имеет корпус формы черного цилиндра, то на стороне катода нанесена серая полоска. На ней изображены различные знаки, символизирующие катод.

  • прерывистая линия;
  • угловые скобы, направленные в сторону отрицательного вывода;
  • эллипсы;
  • знак «минус».

Корпусом синего цвета оснащены похожие детали, но из другого модельного ряда. Область отрицательного контакта обозначается полоской голубого оттенка. Для обозначения знака «—» используют иные цвета. На корпусе темного цвета изображают светлые полосы. Они практически не стираются, поэтому пользователи легко определяют полярность по ним.

Корпус емкости Surface Mounted Device изготовлена из алюминия, поэтому деталь имеет серебристый оттенок. Верхний торец прибора окрашивают в красный, либо черный цвет. Эта область соответствует позиции отрицательного выхода. После установки окрашенный торец, в отличие от других устройств, отлично виден на схеме.

Иногда полярность обозначают путем нанесения маркировки на плату. Область расположения закрашивают белыми штрихованными полосами. Однако некоторые производители белым цветом, наоборот, помечают положительный контакт – этот момент нужно учитывать.

Как найти значение емкости и полярность электролитических конденсаторов

Значение емкости и полярность электролитического конденсатора можно определить следующим образом:

Значение емкости

Значение емкости (а также рабочее напряжение) четко написано на этих конденсаторах. В этом нет ничего сложного.

Полярность

Отрицательный конец обозначается символом минус (-). Другой конец, который не отмечен, будет Положительным концом.

В случае, если отрицательный конец не отмечен символом минус (-), то вы также можете определить его по тонкой полоске нечетного цвета над ним.

В случае, если оба не доступны, тогда вы все еще можете идентифицировать это, видя длину обоих выводов этих конденсаторов. Длина отрицательного вывода всегда меньше положительного конца во время изготовления для его идентификации.

По внешнему виду

Определить полярность конденсатора можно по его внешнему виду. К этому методу прибегают, когда маркировочные надписи полностью или частично стерты. Многие приборы, у которых выводы располагаются на одной стороне, имеют длинную плюсовую ножку.

Изделия бренда «ЭТО» выглядят как два цилиндра, установленных друг поверх друга. Один цилиндр имеет большой диаметр, но небольшую высоту. Второй – высокий, но с относительно небольшим диаметром. Контакты находятся в центре торцов. Положительный выход располагается в торце цилиндра с большим диаметром.

Некоторые виды электролитов оснащены катодом, выведенным на корпус. Он присоединен к шасси электросхемы. Положительный выход располагается в верхней части корпуса, т.е. изолирован от него.

Большая часть импортных электролитов имеют светлые полосы, которые символизируют отрицательную полярность. Если по внешнему виду определить, где у конденсатора плюс и минус, не удается, то проблема решается мультиметром.

Керамические конденсаторы

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

Как определить полярность конденсатора на схеме?

Пустой прямоугольник в конденсаторе — плюс.

Это старые обозначения, черная полоска это +, хотя возможно я ошибся, уж слишком давно изменились ГОСТ-ы на условные обозначения.

На этой схеме белый прямоугольник «плюс», черный «минус». А на западных схемах «плюс» обозначается черной прямой полоской, «минус» искривленной дугой.

Даже по логике плюс питания проходит через 300 ом там и плюс, а напряжение через 27000 ом уже не в счет.

Конденсаторы для «чайников»


Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.
Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.
Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения
Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.
Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Читайте также:  Гост продукт питания это

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

Как правильно заменить конденсатор на материнской плате

Всем привет, сегодня я покажу на своем примере, как можно быстро и правильно произвести замену вздутых конденсаторов на материнской плате компьютера своими руками.

Сразу предупрежу, замена конденсаторов своими руками требует определенных знаний и умений пользоваться таким инструментом как паяльник. В моем случае это китайская паяльная станция Lukey 702.

Моя паяльная станция

Если опыта в пользовании паяльника нет, то сто раз подумайте, прежде чем браться за замену конденсаторов.

На материнской плате компьютера, как правило, конденсаторы начинают выходить из строя через 3-4 года пользования им. Но бывают и исключения, в т.ч. брак. В современных реалиях это нормальное явление, поэтому будем менять их на новые.

Признаки неисправности конденсаторов в материнской плате компьютера

  1. При включении компьютер сначала включается, потом выключается. После трех-четырех раз включения он включается нормально, и грузится операционная система. После этого он работает без проблем, но только стоит его выключить и включить на следующий день, проблема опять повторяется.
    Эти признаки говорят о том, что возможно у вас высохли и вздулись конденсаторы на плате.
  2. Компьютер просто не включается. Возможно причиной не включения могут быть также конденсаторы, как на материнской плате, так и в блоке питания.
  3. При включении или работе компьютера часто появляется синий экран с указанием ошибки.
    Это также может быть причиной вздутия и неисправностей конденсаторов на материнской плате. Как правило это первичные признаки, когда конденсаторы только начинают вздуваться.

Начнем с внешнего осмотра, откройте боковую крышку системного блока и внимательно осмотрите материнскую плату.

Как правило визуально можно понять, что конденсаторы на материнской плате вздулись и требуют замены.

Вздутые конденсаторы на материнской платеЕще один пример вздутых конденсаторов

Постарайтесь осмотреть материнскую плату очень внимательно, т.к. если человек неопытен в данном вопросе, он не всегда с первого раза может выявить неисправный конденсатор. Далее, нам необходимо найти новые конденсаторы на замену.

Обычно есть два варианта, либо взять со старой материнской платы, либо купить в любом магазине радиодеталей, они совсем не дорогие.

Алгоритм простой, выпаиваете старые конденсаторы, смотрите номинал и покупаете новые, лучше взять с собой старые, чтобы показать продавцу (главное, необходимо помнить, что по вольтажу можно брать больше, но не меньше

). Например, стояли
6.3 вольт 1500 мкф,
на замену можно поставить
16 вольт 1500 мкф
.

Конденсатор 6.3 В 1500 мкф

Опять же, если у вас или у ваших друзей есть старая материнская плата, можете выпаять и с нее. Ну вот, у нас все готово для перепайки, начнем замену конденсаторов на материнской плате своими руками.

Повторюсь, на всякий пожарный, замена конденсаторов на материнской плате своими руками требует определенных умений работы с паяльником, если же вы готовы, приступаем.

При замене конденсаторов нам потребуется следующее:

  • Паяльник
  • Канифоль
  • Припой
  • Зубочистки
  • Бензин очищенный (для удаления канифоли с платы)

Примерный набор для пайки конденсаторов

После того как мы выпаяли старый конденсатор, нужно прочистить отверстия для впаивания нового, иначе старый припой просто не даст его нормально вставить. Будем использовать для этого зубочистку или скрепку.

Аккуратно вставляем ее в отверстия и нагреваем паяльником с обратной стороны, чтобы вытолкнуть весь лишний припой.

Еще раз повторюсь, делать это нужно очень аккуратно, так как материнская плата многослойная и можно повредить дорожки внутри платы.

После прочистки отверстий вставляем конденсатор на место, обязательно соблюдая полярность

Обычно, на материнской плате есть обозначения установки конденсаторов (закрашенная сторона это — минус), но лучше всего запомнить как был установлен старый.

Данное правило не относится к материнским платам ASUS, у них все наоборот. На самих конденсаторах также есть обозначения в виде полосы со знаком

Полоса с минусом на конденсаторе

Конечная стадия нашего процесса, запаиваем конденсатор с обратной стороны платы. Затем обрезаем ножки конденсаторов.

Финальная стадия замены конденсаторов на материнской плате

Не забываем очистить плату от флюса или канифоли.

Ну вот и все, на этом наш ремонт завершен. Главное не бояться и аккуратно пробовать паять своими руками. Скажу вам по секрету, это очень увлекательный процесс.

Как определить полярность конденсатора — инструкция с видео

Этот неотъемлемый элемент практически всех эл/цепей выпускается в нескольких модификациях. Необходимость определения полярности конденсатора относится к конденсаторам электролитическим, которые являются, в силу конструктивных особенностей, чем-то средним между полупроводником и пассивным элементом схемы. Разберемся, как это можно сделать.

Способы определения полярности конденсатора

По маркировке

У большинства конденсаторов-электролитов отечественных, а также ряда государств бывшего соцлагеря, обозначается лишь положительный вывод. Соответственно, второй – это минус. Но вот символика может быть разной. Она зависит от страны-изготовителя и года выпуска радиодетали. Последнее объясняется тем, что с течением времени изменяются нормативные документы, вступают в силу новые стандарты.

Все о цветовой маркировке конденсатора вы можете узнать здесь.

Примеры обозначения плюса конденсатора

  • Символ «+» на корпусе около одной из ножек. В некоторых сериях она проходит через его центр. Это относится к конденсаторам цилиндрической формы (бочкообразным), с «дном» из пластмассы. Например, К50-16.
  • У конденсаторов типа ЭТО полярность иногда не обозначается. Но определить ее визуально можно, если посмотреть на форму детали. Вывод «+» расположен со стороны, имеющий больший диаметр (на рисунке плюс вверху).

  • Если конденсатор (так называемая коаксиальная конструкция) предназначен для монтажа способом присоединения корпуса к «шасси» прибора (являющимся минусом любой схемы), то центральный контакт – плюс, без всякого сомнения.

Обозначение минуса

Это относится к конденсаторам импортного производства. Рядом с ножкой «–», на корпусе, имеется своеобразный штрих-код, представляющий собой прерывистую полосу или вертикальный ряд из черточек. Как вариант – длинная полоска вдоль осевой линии цилиндра, один конец которой указывает на минус. Она выделяется на общем фоне своим оттенком.

По геометрии

Если у конденсатора одна ножка длиннее другой, то это – плюс. В основном подобным образом также маркируются изделия импортные.

С помощью мультиметра

Такой способ определения полярности конденсатора практикуется, если его маркировка трудночитаема или полностью стерта. Для проверки необходимо собрать схему. Понадобится или мультиметр с внутренним сопротивлением порядка 100 кОм (режим – измерение I=, предел – микроамперы)

или источник постоянного тока + милливольтметр + нагрузка

О том, как проверить конденсатор мультиметром, читайте здесь.

Что сделать

  • Полностью разрядить конденсатор. Для этого достаточно его ножки замкнуть накоротко (жалом отвертки, пинцетом).
  • Подключить емкость в разрыв цепи.
  • После окончания процесса заряда зафиксировать значение тока (он будет постепенно уменьшаться).
  • Разрядить.
  • Снова включить в схему.
  • Считать показания прибора.

Если плюсовой щуп мультиметра был соединен с «+» конденсатора, то разница в показаниях должна быть незначительной. В случае если полярность перепутана (плюс на минус), то отличие результатов измерений будет существенной.

Рекомендация. Определение полярности прибором целесообразно делать в любом случае. Это позволит одновременно произвести и диагностику детали. Если электролит, имеющий большой номинал, заряжается сравнительно быстро от источника 9±3 В, то это свидетельство того, что он «подсох». То есть утратил часть своей емкости. Его лучше в схему не ставить, так как ее работа может быть некорректной, и придется заниматься дополнительными настройками.

Как определить полярность конденсатора CBB60 40мкф

На нём не написано что-то вроде «АС», 50/60Гц и т. д., указывающее на переменный ток? Если написано, то это пусковой неполярный конденсатор. СВВ мне больше известен, как производитель как раз пусковых конденсаторов и других, неполярных. На полярных электролитах напротив минусового вывода серая полоса вдоль корпуса, по всей длине которой нарисованы чёрные минусы. Есть и другие варианты меток (про более длинный плюсовой вывод уже сказали):

Длинная ножка это вроде +. Если там такая имеется.

Если не отмечена значит не полярный, но судя по ёмкости, это огромный конденсатор.

Проверка и замена пускового конденсатора

Для чего нужен пусковой конденсатор?

  • Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.
  • Поэтому их ещё называют фазосдвигающими.
  • Место установки — между линией питания и пусковой обмоткой электродвигателя.
  • Условное обозначение конденсаторов на схемах
  • Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

  1. Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).
  2. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.
  3. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:
  • 400 В — 10000 часов
  • 450 В — 5000 часов
  • 500 В — 1000 часов
Читайте также:  Система питания хундай туксон

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

  • Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
  • К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
  • После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
  • Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

  1. То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
  2. Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
  3. Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

  • Самые доступные конденсаторы такого типа CBB65.
  • Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
  • Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
  • Клеммы для удобства соединения сдвоенные или счетверённые.

Замена конденсаторов на мат.плате и в блоке питания

В элементной базе компьютера (и не только) есть одно узкое место – электролитические конденсаторы. Они содержат электролит, электролит – это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке – дело регулярное.

Поэтому замена конденсаторов – это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж:
16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.
Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата – это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже – насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

А если опыта нет, то попытка ремонта вполне может закончится плачевно. Как раз для таких случаев спешу поделиться способом замены конденсаторов без выпаивания из печатной платы. Способ внешне довольно не аккуратный и в некоторой степени более опасный, чем предыдущий, но для личного пользования сгодится.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) моральную и материальную поддержку.

Источник