Меню

Какое питание для серверов

Электропитание ИТ-оборудования: безопасность или бесперебойность? часть 2

Продолжаем статью, цель которой — поделиться опытом и показать ключевые особенности и частые ошибки возникающие при проектировании и организации подсистем электроснабжения ИТ-инфраструктуры и ЦОД в целом. Но хотелось бы немного расширить аудиторию и посвятить несколько разделов базовым элементам обеспечения электробезопасности и защиты оборудования и людей.

Тем, кто пропустил первую часть или хочет вспомнить первую часть можно пройти сюда.

Для тех кто понимает, что такое автомат и УЗО, для чего они необходимы, что и от чего защищают – переходите к разделу Нужны ли УЗО для IT-оборудования, серверной, ЦОДа?.

Часть вторая

Посмотрим какая взаимосвязь между энергетикой и конечным ИТ-оборудованием, будем разбираться в вопросе- в каких случаях перебоев в сети питания операционная система гарантированно должна работать без сбоев.

Вопросы переключения на резервный источник питания

Электроснабжение информационного оборудования организовывается с резервированием. Рассмотрим организацию электроснабжения в части ЩБП-БРП-БП (щит бесперебойного питания-блок распределения питания- блок питания). Типы резервирования бывают следующих типов:

  1. Резервирование кабелей к стойке, оборудованию, с использованием отдельных блоков распределения питания, БРП (рисунок 1)
  2. Резервирование шин питания в щите электроснабжения, с использованием отдельных блоков распределения питания, БРП (рисунок 2)

Резервирование на уровне блоков питания непосредственно в сервере, коммутаторе, ИТ-устройстве (рис.3)
Резервирование при помощи стоечного переключателя нагрузки, стоечного АВР (СПН, он же ATS) (рис.4)

Для переключения между основным и резервным вводом могут использоваться:

  • в сфере информационных систем: шкафы АВР/STS (Static Transfer Swith) для систем большой мощности, для перехода на питание от резервного ИБП в момент работы полноценной системы 2N или комбинаций систем N+1;
  • в сфере систем электроснабжения различного вида схемы АВР (на контакторах, на контроллерах);
  • на уровне серверной стойки: автоматические быстродействующие стоечные АВР\ATS (Automatic Transfer Switсh);
  • на уровне конкретного информационного оборудование: дублированные блоки питания.

Как мы цитировали выше для IT-оборудования, «перерыв в электроснабжении недопустим». А что скрывается под этой фразой? Что такое «перерыв» в питании информационного оборудования? Сейчас разберемся на живом примере.

Заказчик внедряет локальную серверную вместе с IT-инфраструктурой двух этажей под офис фирмы. На этапе обсуждения системы электропитания у него возникает желание поставить все информационное оборудование с одним блоком питания (БП), а второй слот под БП серверов оставить свободным, и на всю стойку смонтировать единый ATS стоечного исполнения. (рис.4, схема).

Внешний вид тыльной стороны сервера с дублированными блоками питания
Как Заказчик аргументировал свое желание:

  • Экономия средств ($500-800 с каждого устройства в стойке)
  • Можно поставить два простейших БРП и применить их уже для распределения питания после ATS
  • Абсолютно аналогичный уровень надежности системы, по сравнению с классическим способом распределения

Мы взяли тайм-аут, подробно исследовали желание Заказчика с различных точек зрения, надежности сервисов в целом в гарантийный и послегарантийный срок, а также:

  • стоимости (экономии) капитальных затрат при внедрении (CAPEX)
  • стоимости затрат на амортизацию, содержание ЗИП, трудозатрат персонала клиента (OPEX)
  • сравнения алгоритмов работы и времени переключения на резервную линию в обоих вариантах, проверка на «единые точки отказа»
  • уровня рисков зависания и/или перезагрузки операционных систем информационного оборудования, падения информационных сервисов, которые на них работают.

И вот что выяснилось:

Согласно нормативной базе ГОСТ 32144-2013 (Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электроэнергии в сетях общего назначения. Дата введения – 1 июля 2014 года), основной причиной сбоев в работе информационного оборудования могут стать провалы напряжения, которые

обычно происходят из-за неисправностей в электрических сетях или в электроустановках потребителей, а также при подключении мощной нагрузки

длительность провалов напряжения может быть до 1 минуты

Эта фраза говорит нам, что информационное оборудование должно обеспечиваться ИБП и/или быстродействующими АВР, так как провалы напряжения подобной длительности являются допустимыми и нормальными с точки зрения большой энергетики, но будут являться фатальными для ИТ-оборудования и сервисов.

К слову, стоит отметить, что в данный момент в действующей нормативной базе РФ имеются противоречия в части измерении величин, относящихся к качеству электроэнергии, подробнее можно почитать в статье технического руководителя направления нашей компании Виктора Чердака (источник digitalsubstation.com)

В последние годы государственные стандарты в области измерений параметров электрической энергии, относящихся к КЭ, активно развивались и были неоднократно переработаны

Важным изменением стала замена ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» [16] на ГОСТ 32144-2013. Данные стандарты определяют различную номенклатуру показателей качества электроэнергии.

А вот насколько быстродействующим? Как определить то время в миллисекундах, за которое сервис (и сервер) заказчика не упадет, а операционная система не уйдет в «critical error»?

Существует стандарт CBEMA (Computer and Business Equipment Manufacturers Association), который после некоторых корректировок ныне известен как «кривые ITIC» (Information Technology Industry Council), а ее варианты включены в стандарты IEEE 446 ANSI. Согласно этим нормативам, электронные схемы блоков питания должны сохранять работоспособность в течение 20 мс (или 0,02 секунды, то есть период).


Те самые кривые ITIC

Согласно требованиям к блокам питания серверных и компьютерных систем Server System Infrastructure можем сказать, что параметр блока питания Tvout_holdup во время провала напряжения питающей сети обеспечивает работу информационного оборудования минимум 21 мсек. То есть, полный период сети – это гарантированное время нормальной работы сервера или коммутатора. Параметр Tpwok_holdup определен минимально 20мсек.

Читайте также:  Необходимый набор спортивного питания

Справка: Hold-up time (время удержания) — это временной промежуток, в течение которого блок питания может поддерживать выходные напряжения в определенных пределах после пропадания на его входе питающего напряжения. В большинстве компьютерных блоков питания Hold-up time характеризует еще и через какой промежуток времени power good сигнал (PWR_OK) скажет системе, что напряжения, вырабатываемые блоком питания, нестабильны (для компьютерных блоков питания этот параметр обычно более 16 мс).

Вот одна из таблиц из документа

А это диаграмма (time-line) с регламентируемыми алгоритмами работы БП

Теперь посмотрим, какое время переключения заявляет APC, например, для стоечного переключателя нагрузки марки AP7721. Видим, что тут у нас обычно 8-12 мс, но 18 мс – это максимальное время переключения.

Можем сделать вывод, что время переключения на резервный ввод для стоечного переключателя нагрузки соответствует спецификации работы блока питания серверного оборудования. Получается, что сбоев в работе информационного оборудования не будет.

А что у нас с экономической составляющей и какой из вариантов более выгоден и отказоустойчив?

Предположим, у нас в стойке имеются три небольших сервера, в которые можно поставить по два блока питания и три устройства с недублированными блоками питания. Все критически важны и отказ любого из устройств выведет в отказ всю систему заказчика в целом. Стоечный переключатель нагрузки нам в любом случае понадобится. Это порядка 18 тыс. рублей.

Заказчик заявляет, что PDU (БРП) им не нужны, значит, в бюджете будет лишь стоимость ATS – те же 18 тыс. рублей. В качестве замены блокам распределения питания (PDU) Заказчик предлагает использовать распределение питания «на борту» стоечного переключателя нагрузки. Также Заказчик планирует купить сервера с двумя слотами под блоки питания, но в комплектации с одним БП ради экономии. (рисунок 4)

Классический вариант (рисунок 3) предполагает комплект из 2-х PDU – около 32 000 рублей, 3 дополнительных блока питания в серверы по $500 каждый за 84 тыс. рублей итого. ATS за те же 18 тыс. рублей. Сложив все, мы понимаем, что классическое решение обойдется Заказчику примерно в 134 тыс. рублей.

Вроде бы действительно, Заказчик прав, деньги совершенно другие. Но давайте посмотрим с точки зрения отказоустойчивости и удобства обслуживания обоих вариантов:
Вариант заказчика: Единая точка отказа – стоечный переключатель нагрузки. Если с ним что-то случится, то мы теряем всю стойку целиком. Значит, надо иметь ЗИП прямо на площадке, что прибавляет к смете 18 000 рублей. Блоки питания в серверах стоят по одному, они тоже являются точками отказа. Значит, желательно иметь хотя бы один, а лучше все три блока питания в резерве на площадке. Примем, что нужны три БП в ЗИП – это еще плюс 36 тыс. рублей. Нужно проверять мощность, которую может коммутировать стоечный ATS. Cейчас мы исходим из того, что 3 кВт или 16А нам хватит на все оборудование стойки. Если нам понадобится ATS на 32А (7кВт), то это будет уже значительно дороже (более 100 тыс. руб). То есть бюджет варианта Заказчика при детальном рассмотрении надежности вырастает до 160 тыс. рублей. При этом в случае ЧП несмотря на то, что запасные части будут на площадке понадобится down-time для замены устройства.

Единая точка отказа (SPOF, Single Point Of Failure) — узел, линия связи или объект системы доступности данных, отказ которого может вывести из строя всю систему, или вызвать недоступность данных

Вариант Открытых Технологий: По рисунку 3, но при необходимости добавляется ATS для мелкого сетевого оборудования с единственным блоком питания.

Точка отказа – тот самый ATS. Если с ним что-то случится, то мы теряем всю стойку целиком. Согласны с тем, что надо иметь ЗИП прямо на площадке. Но в нашем случае, если отказывает только ATS, то это может повлиять лишь на работу коммутаторов и вспомогательного оборудования. Сами серверы спокойно продолжат работу. Блоки питания в ЗИП не нужны. Так как при выходе из строя одного из дублированных блоков питания сервер продолжит работу на оставшемся, и, скорее всего, дождется нового блока питания от вендора, вне зависимости от удаленности площадки.

Таким образом, подключать все оборудование стойки на единый ATS можно, но не рационально, так как в этом случае получаем единую точку отказа по питанию. Закупка серверов с дублированными блоками питания предпочтительна в любом случае, так как отказоустойчивость на уровне информационного оборудования увеличивается в разы.

Стоечный переключатель нагрузки обеспечивает корректное и почти мгновенное переключение на резервный ввод, информационное оборудование даже не почувствует этого, программные продукты и операционные системы продолжат корректно работать. Стоечные блоки распределения питания в любом случае нужны и экономить на них не надо. Видимая экономия на капитальных затратах по распределению питания может обернуться нерешаемыми проблемами при эксплуатации, например, необходимости «гасить» всю стойку только для того, чтобы переместить ATS в другой юнит или провести ревизию стоечного переключателя нагрузки. В любом случае для дублированных блоков питания должен быть ЗИП, а он не всегда возможен или имеется.

Внешний вид съемного блока питания сервера:

Работа информационного оборудования с двумя блоками питания была хорошо описана в статье Вадима Синицкого @dimskiy . Как видим, есть свои достоинства и недостатки. И наличие резервных блоков питания для информационного оборудования в любом случае необходимо, особенно если объект находится вне зоны быстрой поставки блока питания от вендора. Кроме того, хотим заметить, что онлайн калькуляторы расчета мощности новых серверов от вендоров могут применяться лишь как ориентир для системных администраторов, персонала Заказчика.

Читайте также:  Рацион питания неделю при сахарном диабете 2 типа

Реальные возможности подключения нового мощного сервера к существующей стойке должны оцениваться с учетом изначального проекта электроснабжения, текущего состояния и нагрузки электросети стойки, серверной, ИБП, генератора…. С точки зрения подключения в стойке также стоит учитывать:

  • текущие возможности PDU, типа свободных разъемов в них
  • номиналов автоматов в щитах и сечения и фазность кабельной линии к стойке.

Отдельного внимания заслуживает надежность работы системы электроснабжения серверной, если она построена по системе, изображенной на рис.2 (с двумя системами шин), наличие нового мощного сервера может в случае ремонтных работ привести к перегрузке всей системы электроснабжения, снизить время автономной работы ИБП на батареях, заставить ИБП перейти на байпас по перегрузке и прочее…

А как у вас построена система распределения в стойке?
Каков ресурс БП для ИТ-оборудования и алгоритм их программного резервирования?
Какие вы предпочитаете БРП использовать: базовые, с мониторингом? насколько полезна в практике функция «управляемый БРП/PDU» и помогла ли она вам когда либо?

Источник

Как выбрать блок питания для компьютера и сервера?

Блок питания (БП) – это встраиваемое в корпус компьютера (сервера) устройство, предназначенное для снабжения электроэнергией его систем и компонентов с заданными характеристиками мощности и напряжения. Блок питания не выступает в качестве самостоятельного

Содержание статьи:

Блок питания (БП) – это встраиваемое в корпус компьютера (сервера) устройство, предназначенное для снабжения электроэнергией его систем и компонентов с заданными характеристиками мощности и напряжения. Блок питания не выступает в качестве самостоятельного источника электроэнергии, его задача – стабилизация и преобразование входящего переменного тока в постоянный ток. Является важным элементом устройства компьютера, от качества его работы зависит производительность и исправность оборудования.

Общая конструктивная схема БП состоит из фильтров помех, корректора мощности, снижающего нагрузку на сеть, инвертора (преобразователя) переменного тока, конденсаторного фильтра, нормализующего выпрямленный ток. Инвертор состоит из выпрямительного моста (на силовых транзисторах) и трансформатора. От качества компонентов зависит производительность блока питания, качество постоянного тока и долговечность работы. Во время работы БП выделяется значительное количество тепловой энергии, поэтому устройство снабжается системой охлаждения, пассивной или активной.

К блокам питания компьютеров и серверов выдвигаются различные требования. Поскольку сервер работает практически в круглосуточном режиме, его надежность и способность выдерживать повышенные нагрузки должна быть увеличена.

Как выбрать блок питания для компьютера?

На выбор блока питания для ПК влияют несколько факторов. Рассмотрим основные параметры, к которым относят:

Форм-фактор

Определяет место расположения блока питания в корпусе компьютера, вид и расположение разъемов, места выходов элементов управления. Наибольшей популярностью для ПК пользуется корпус ATX, используемый для большинства полноразмерных персональных компьютеров. Наряду с ним используется форм-фактор FTX, отличающийся более компактными размерами. Если БП предназначен для сервера, он часто встраивается в телекоммуникационную стойку – в таком случае важную роль играет его высота, измеряемая в юнитах (1U, 2U).

Допустимое входное напряжение

На рынке представлены различные модели блоков питания компьютера, рассчитанные на работу с переменным током напряжением от 100 Вольт до 240 Вольт. Выбор конкретного устройства зависит от стабильности работы электросети общего пользования, а также наличия отдельного стабилизатора напряжения.

Мощность

Одна из ключевых характеристик БП, напрямую влияющая на работоспособность компьютера в целом. Расчет необходимой мощности устройства производят, исходя из суммы термопакета (TDP) процессора и видеокарты, умноженной на 1,5. TDP комплектующих указывают в Ваттах, его значение можно узнать в спецификациях компонентов.
Диапазон мощности современных блоков питания может колебаться от 250 Вт до нескольких тысяч, важно помнить, что номинальная мощность, которая указана в спецификации к БП – это допустимая максимальная величина нагрузки, которую оборудование может выдерживать в течение короткого времени. Поэтому следует оставлять «запас» по мощности в 30-40% для эффективной работы компьютера.

Охлаждение

Подавляющее количество БП оснащено активной системой вентиляции, состоящей, как правило, из кулера (вентилятора), диаметром от 40 до 140 миллиметров. При отсутствии такового компьютерное оборудование необходимо использовать в помещениях с регулировкой микроклимата. По общему правилу, на 1Вт номинальной мощности блока питания требуется 1,06Вт охлаждения. Диаметр кулера зависит от мощности охлаждения, вентилятор может работать постоянно либо управляться термодатчиком – включение происходит при достижении определенного значения температуры. Конечно, модели, оснащенные интеллектуальной системой охлаждения, дороже, но и намного экономнее, комфортнее в эксплуатации.

Также следует учитывать такой фактор, как шумность работы кулера. Она зависит от нагрузки на БП (по этой причине также следует иметь запас по мощности), качества материалов, из которых изготовлен вентилятор и степени его загрязнения.

Поддержка 80 PLUS+

Коэффициент 80 PLUS+ отражает КПД блока питания при различной нагрузке. Так, при 100% нагрузке (равной номинальной мощности), коэффициент полезного действия лучших образцов превышает 90%, в целом, все устройства, сертифицированные по системе 80 PLUS+, имеют КПД не менее 80%. В зависимости от его значения различают, по степени возрастания эффективности, сертификаты 80 PLUS: PLUS, Bronze, Silver, Gold, Platinum и Titanium. В любом случае, для качественной работы рекомендовано приобретение блоков питания, сертифицированных по этой классификации.

Читайте также:  Тренировки дуэйна джонсона питание

Поддержка горячей замены (HotPlug)

Наличие этой функции позволяет отсоединение БП от компьютера без отключения питания.

Выбор блока питания производят с учетом перечисленных выше факторов, важнейшими из которых являются форм-фактор, диапазон допустимого переменного тока и мощность устройства. Используя приведенные выше рекомендации, подобрать нужный БП можно самостоятельно.

Однако, если нет полной уверенности в правильности выбора или необходимых знаний, лучше всего обратиться в гипермаркет серверного и сетевого оборудования «Сетевуха» — специалисты помогут рассчитать параметры БП и выбрать нужное устройства из множества блоков питания, которые находятся на складе компании.

Также возможна покупка онлайн – в таком случае выбранный товар «Сетевуха» доставляет по указанному покупателем адресу.

Источник



БП для сервера, расчет мощности блока питания

БП для сервера, расчет мощности блока питания

Как рассчитать, каких БП достаточно для обеспечения непрерывной работы сервера? Ответ не настолько прямолинеен, как казалось бы. Посчитать максимальное энергопотребление всех компонентов и обеспечить выдачу требуемой мощности от одного БП, а затем для избыточности установить в сервер два таких блока питания — вот традиционный подход. Однако благодаря технологии PowerSafeguard в большинстве случаев можно обойтись блоками питания с меньшим номиналом, чем требуется по результатам такого рассчета, и при этом быть уверенным за работоспособность сервера.

PowerSafeguard – это это технология, обеспечивающая автоматическое регулирование энергопотребления сервера для поддержания непрерывной работы в случае выхода из строя части блоков питания, если мощности оставшихся БП окажется недостаточно для полноценной нагрузки. Эту технологию компания Fujitsu уже некоторое время предлагает в своих серверах RX200 S7, RX300 S7, RX350 S7, TX300 S7. Все эти серверы используют стандартизованные БП двух типов — мощностью 450 Вт или 800 Вт.

PowerSafeguard позволяет эксплуатировать сервер на источниках питания 450 Вт и обеспечивать непрерывность работы при выходе одного из БП из строя, даже в том случае, если пиковое энергопотребление данной конфигурации теоретически может превосходить 450 Вт (допустимое превышение пиковой нагрузки над номиналом БП составляет 30%, то есть конфигурации с теоретическим пиковым энергопотреблением до 585 ватт смогут работать на БП 450 Вт).

В ситуациях, когда реальное энергопотребление системы оказывается на грани возможностей блока питания, технология PowerSafeguard снижает p-state (соответственно тактовые частоты ядер процессоров), обеспечивая общее энергопотребление системы в пределах мощности одного блока питания. Непрерывность работы сервера гарантирована, хотя в некоторые периоды времени будет снижена производительность системы.

Пояснить суть технологии удобно на примере. Возьмем сервер PRIMERGY RX300 S7. Пусть у него будет достаточно насыщенная конфигурация – два процессора Xeon E5-2680, 24×4 = 96ГБ памяти, 8 дисков SAS, PCIe-SSD на 1.2TB, RAID 5/6 c FBU, контроллер FibreChannel и пишущий BlueRay привод.

Пиковое энергопотребление этой системы можно проверить по функции PowerCalculator в конфигураторе Fujitsu. Смотрим нагрузку на БП, то есть DC-load.

При максимальной загрузке сервера это будет 524.8 Вт. Из двух возможных вариантов блоков питания (450 Вт и 800 Вт) возникает желание поставить второй. Однако мы поставим 2х 450 Вт. Естественно, два таких БП полноценно тянут нагрузку, работая при этом в сбалансированном режиме. Что произойдет в случае перегорания одного из них?

Надо отметить, что энергопотребление сервера не является величиной постоянной, а варьируется в зависимости от загрузки сервера (спасибо гибкости платформы Xeon E5 от Intel, включая технологию TurboBoost 2.0). График потребляемой мощности по времени будет выглядеть, как волнистая линия.

Как показывает тот же PowerCalculator, при весьма типичном уровне загрузки сервера 70% — он потребляет не более 378 Вт!

То есть в большинстве случаев даже насыщенно сконфигурированный сервер прекрасно продолжит работать на одном 450-ваттном блоке питания. Однако там, где у нас при двух блоках питания были бы пики энергопотребления – сработает PowerSafeguard. Через встроенный чип управления сервером (iRMC) p-state процессоров будет снижен до минимального, и затем будет повышаться до того момента, пока энергопотребление не «упрется» в лимит блока питания, либо пока не окажется, что ограничивать процессор не требуется – так как при снижении загрузки сервера этот лимит окажется соблюденным без вмешательства технологии PowerSafeguard.

Таким образом, при работе в «аварийном» режиме (на одном блоке питания, до восстановления работоспособности второго) снижение производительности будет наблюдаться лишь в течение определенных отрезков времени. При этом в случае типичной для серверов загрузки около 70% будет доступна полная производительность. Срезаются только «всплески» графика.

Естественно, для конкретной конфигурации лучше проверить параметры энергопотребления при разных загрузках с помощью калькулятора. Но хотелось бы отметить, что для примера взята действительно «хищная» по энергопотреблению конфигурация, и большинство наиболее ходовых конфигураций сервера такого типа даже в пиковых ситуациях потребляют меньше 450 Вт. Так что использование 450-ваттных БП вместо 800-ваттных оправдано. Помимо цены добавлю еще довод: блоки питания имеют наибольшую энергоэффективность при высокой степени нагрузки, поэтому с точки зрения энергоэффективности блок питания 450 Вт, работающий с нагрузкой более 60% — лучше, чем выдающий ту же мощность БП 800 Вт, загруженный на 34%.

Источник