Меню

Преобразователь напряжения для питания люминесцентной лампы

Назначение и классификация трансформаторов для люминесцентных ламп, какую модель выбрать

Пользовательским недостатком конструкции первых ламп дневного света (так тогда называли такие светильники) было неприятное гудение балластного реостата. Со временем уровень шума удалось снизить, но необходимость в трансформаторе осталась. Разберёмся в том, что такое трансформатор для питания люминесцентных ламп, и как его правильно выбрать.

Конструкция и принцип действия люминесцентной лампы

Существует три основных типа люминесцентных ламп: с холодным катодом, с горячим катодом и электролюминесцентные. Все они для создания света используют люминофоры, возбуждаемые электронами.

  1. Цветовая температура – 5600 К.
  2. Светоотдача – 46… 105 лм/Вт.
  3. Сроки службы – 10 000 … 45 000 часов (без учета балластного реостата).

Данные устройства работают путем ионизации паров ртути в стеклянной трубке. Движущийся в газе поток электронов испускает фотоны.

Люминофорным покрытием ультрафиолетовый свет преобразуется в стандартный видимый.

Лампа состоит из стеклянной трубки, заполненной инертным газом (обычно аргоном) при низком давлении. На каждой стороне трубки имеется вольфрамовый электрод. При подаче напряжения в межэлектродном промежутке возбуждается тлеющий разряд, вызывающий свечение газа.

Назначение балласта

Обязательные электрические характеристики светильника дневного света:

  1. Потребляемый ток.
  2. Пусковое напряжение.
  3. Частота тока.
  4. Коэффициент амплитуды тока.
  5. Уровень освещённости.

Дроссель обеспечивает высокое начальное напряжение для инициирования тлеющего разряда, а затем быстро ограничивает ток для безопасного поддержания нужного уровня напряжения.

Основные функции балластного трансформатора рассматриваются далее.

Безопасность

Балласт регулирует мощность переменного тока для электродов. При прохождении переменного тока через дроссель напряжение повышается. Одновременно ограничивается сила тока, чем предотвращается короткое замыкание, которое приводит разрушению люминесцентного светильника.

Подогрев катодов

Для работы светильника необходим всплеск высокого напряжения: именно тогда происходит пробой межэлектродного промежутка, и загорается дуга. Чем холоднее лампа, тем выше необходимое напряжение. Напряжение «проталкивает» ток через аргон. Но у газа есть сопротивление, которое тем выше, чем холоднее газ. Поэтому требуется создать более высокое напряжение при максимально низких температурах.

Для этого требуется реализовать одну из двух схем:

  • с помощью пускового выключателя (стартёра), содержащего небольшую неоновую или аргоновую лампу мощностью 1 Вт. Она нагревает биметаллическую полосу в стартёре и облегчает инициирование газового разряда;
  • вольфрамовыми электродами, через которые проходит ток. При этом электроды нагреваются и ионизируют газ в трубке.

Обеспечение высокого уровня напряжения

При разрыве цепи магнитное поле прерывается, импульс высокого напряжения посылается через светильник, и возбуждается разряд. Используются следующие схемы создания высокого напряжения:

  1. Предварительный подогрев. В этом случае электроды нагреваются до инициирования разряда. Пусковой выключатель замыкается, позволяя току протекать через каждый электрод. Переключатель стартера быстро охлаждается, размыкая переключатель и запуская напряжение питания на дуговой трубке, в результате чего и возникает разряд. Во время работы вспомогательное питание на электроды не подаётся.
  2. Быстрый запуск. Электроды нагреваются постоянно, поэтому балластный трансформатор включает две специальные вторичные обмотки, которые обеспечивают низкое напряжение на электродах.
  3. Мгновенный запуск. Электроды перед началом работы не нагреваются. Для устройств мгновенного пуска трансформатор обеспечивает относительно высокое пусковое напряжение. Вследствие этого разряд легко возбуждается между «холодными» электродами.

Ограничение электрического тока

Необходимость в этом возникает тогда, когда нагрузка (например, дуговой разряд) сопровождается падением напряжения на клеммах при увеличении тока.

Стабилизация процесса

К люминесцентным светильникам предъявляются два требования:

  • чтобы запустить источник света, для создания дуги в парах ртути необходим скачок высокого напряжения;
  • как только лампа запускается, газ оказывает уменьшающееся сопротивление.

Эти требования варьируются в зависимости от мощности источника.

Конструкция дросселя лампы дневного света

Проволока

Проводники представляют собой нити, изготавливаемые из вольфрама, который дополнительно легируется высокотемпературными силикатами калия или алюминия. Минимальная температура рекристаллизации проводника – не менее 2100 С.

Сердечник

Один из электродов представляет собой биметаллическую полосу, которая изгибается при нагревании, вызывая контакт с другим электродом. Когда два электрода соприкасаются друг с другом, ток становится постоянным.

Заливочная масса

В колбы люминесцентных светильников бытового предназначения закачивается аргон. Инертные свойства аргона исключают корродирующее действие кислорода, особенно в источниках с горячей вольфрамовой нитью. Использование аргона предотвращает испарение проводников.

Корпус

Стеклянная трубка содержит небольшое количество ртути и аргон, находящийся под очень низким давлением. Трубка также содержит люминофорный порошок, который наносится на внутреннюю часть стекла. Стекло корпуса должно иметь высокую механическую и диэлектрическую прочность.

Разновидности и сравнительный анализ дросселей

Важно! На практике используются три типа электронного балласта: магнитные, полупроводниковые и электронные.

Электромагнитный дроссель

Магнитные трансформаторы не содержат печатных плат, и используются в газоразрядных лампах высокой интенсивности. Они работают при частоте переменного тока 50 Гц.

Конструктивно трансформатор магнитного типа представляет собой сердечник, выполненный из толстой проволоки с хорошей магнитной проводимостью, и катушечные обмотки, при помощи которых создаётся высокое напряжение.

Электронный дроссель

Электронные балластные трансформаторы собраны на pnp-транзисторах, которые включаются в электронный полумост.

Электронные балласты меньше и легче, чем магнитные, они могут действовать и при переменных значениях частоты тока.

Полупроводниковый дроссель

Преимущество схемы заключается в том, что возможна передача значительной мощности, при нечувствительности к изменениям частоты питающего тока. Коммутация происходит быстрее, а величина магнитного поля уменьшается.

Читайте также:  Конспект занятия по рисованию продукты питания старшая группа

Разнообразие дросселей по мощности в ваттах

Различают дроссели малой, средней и большой мощности. Первые (мощностью до 11…15 Вт) используются в миниатюрных и энергосберегающих светильниках, вторые (до 30…40 Вт) – в офисных лампах, а более мощные – для освещения залов, гостиных, холлов и прочих помещений значительной площади.

Различие по условиям пуска

Например, для люминесцентных ламп мощностью до 40 Вт самым распространённым режимом работы является режим быстрого запуска. Преимущества быстрого запуска заключаются в плавном нарастании напряжения, увеличении срока службы и возможности диммирования – плавного изменения яркости испускаемого светового потока.

Для ламп меньшей мощности (менее 30 Вт) характерен режим предварительного нагрева. Источники света, работающие в этом режиме, лучше, поскольку для непрерывного нагрева электродов не требуется дополнительная мощность. Однако такие лампы мерцают во время запуска и характеризуются коротким сроком службы.

Маркировка дросселей по степени потери мощности

Общеприняты маркировки В, С и D. Наименьшей потерей мощности характеризуются дроссели В, сниженным уровнем потерь – С, обычным уровнем – D.

Как подобрать нужную модель по техническим характеристикам и производителю

Любой трансформатор рассчитан для использования с люминесцентными лампами определённой мощности. Выбор проводится с учётом следующих факторов:

  1. Количества обслуживаемых светильников.
  2. Суммарно потребляемой мощности.
  3. Качества поставляемой электроэнергии (амплитуды скачков по току, напряжению и частоте).
  4. Габаритных размеров устройства.
  5. Функциональных возможностей.

Программируемые трансформаторы обладают очевидными преимуществами:

  • возможностью обеспечения параллельной работы всех источников света, которые установлены в помещении;
  • малым временем запуска (не более 700 мс). Поэтому, если одна лампа выходит из строя, другие остаются зажжёнными;
  • регулируемой продолжительностью задержки при включении;
  • возможностью использования и в других приложениях (например, для работы датчиков присутствия).

Важно! Программируемые трансформаторы гарантируют пониженные значения энергопотребления, быстрый предварительный нагрев катодов ламп до оптимальной стартовой температуры и быстрое зажигание светильников. Они допускают кратковременную перегрузку и, следовательно, могут использоваться для временного повышения светового потока.

Добротная схема балласта должна сохранять свою работоспособность при нагреве корпуса до 90 С (с гарантией не менее трёх лет).

При выборе учитывают максимальный ток, потребляемый светильником. Например, трансформатор, который рассчитан на ток 200 мА, нельзя применять в схемах пуска с токами более 250 мА.

Конструкция трансформатора предусматривает регулирование светового потока в диапазоне, который установлен санитарно-гигиеническими требованиями. Они определяются по ГОСТ Р 55710-2013.

Основные неполадки и способы ремонта

Нет зажигания лампы

Убедитесь, что настенный выключатель в порядке. Выключите переключатель, выньте трубки и вновь вставьте, чтобы убедиться, что они полностью зафиксированы. Если лампа действует прерывисто, это обычно указывает на перегрев балласта.

Проблемы с изоляцией

Возникают, если температура превышает 90 С. Изоляция должны быть такой, чтобы обеспечивалась хорошая циркуляция воздуха. Для этого между всеми компонентами светильника и смежными элементами помещения должен быть зазор не менее 7…8 мм.

Концы чернеют

Конец трубки становится черным, если у светильника слишком быстрый цикл переключения или, если неисправен катод. Поэтому лучше оставлять лампы включенными, а не быстро их выключать и снова включать. Каждое переключение вызывает постепенную эрозию электронно-эмиссионных материалов, покрывающих электроды.

Полосы внутри лампы

Дефект связан с потерей герметичности корпуса. Такую лампу необходимо заменить.

Обзор популярных моделей

Schwabe Hellas

Популярный немецкий бренд, продукция которого сертифицирована соответственно требованиям ISO 9001: 2000 и ISO 14001: 2005. Знаки качества применяются ко всем стандартным балластам Schwabe Hellas, которые отвечают европейским нормам напряжения и электромагнитной совместимости.

Helvar 65W, Helvar 85W

Производство сосредоточено в Шотландии и Северной Ирландии. Выпускаются магнитные балласты Многолетний опыт разработки балласта и превосходные производственные знания гарантируют высокое и равномерное качество продукции. Магнитные балласты Helvar имеют классы энергоэффективности B2 и B1.

Правила эксплуатации

При обслуживании устройств необходимо придерживаться определённых правил. Предварительно (до отсоединения балласта) производится маркировка проводов. Это сэкономит время монтажа. Неправильное подсоединение приводит к перегреву проводов, а часто светильник вообще не включается.

Важно! При регулировке учитываются исходные требования к работе светильников, которые управляются трансформатором.

В частности, необходимо установить, что приоритетнее – максимальная светоотдача, минимальное время пуска или отсутствие перегрева корпуса.

При установке балластов следует учесть, что каждый трансформаторов способен питать до четырёх светильников (конкретное количество указывается в инструкции пользователя).

Важный параметр трансформатора – коэффициент балласта. Его значение определяет светоотдачу конкретной системы светильников. Для стандартных 40-ваттных ламп значение балластного коэффициента должно быть не ниже 0,95; с уменьшением мощности значение снижается, но не должно быть ниже 0,87. В продаже встречаются трансформаторы и с более низким балластным фактором (от 0,70 до 0,75), но их можно применять лишь с лампами, работающими в режиме быстрого запуска.

Важно! Более низкий балластный коэффициент уменьшает выходной сигнал, и гарантирует потребление пропорционально меньшей мощности.

Тщательный выбор трансформатора к светильникам с определенным балластным фактором оптимизирует потребление энергии, и позволяет точнее настроить уровни освещения.

Читайте также:  Кулинарная книга для питания детей

Источник

Преобразователь для питания люминесцентной лампы с регулировкой яркости

Предлагаемую конструкцию, способную зажечь лампу дневного света (ЛДС) мощностью до 20 Вт от 12-ти или 6-ти вольтового аккумулятора, можно использовать в походном фонаре или для аварийного освещения.

Схема представляет собой классический блокинг-генератор, собранный на транзисторе VT1 и трансформаторе T1. В результате работы генератора на повышающей обмотке III формируются импульсы с частотой около 35 кГц и амплитудой 400 В. Такого напряжения вполне достаточно для поджига лампы даже с холодными спиралями, что позволяет использовать лампы со сгоревшими нитями накала.

Поскольку частота напряжения питания лампы достаточно высока, мерцания даже «уставшей» лампы с изношенным люминофором не наблюдается. Яркость свечения лампы регулируется переменным резистором R2, который изменяет скважность импульсов, оставляя частоту их следования неизменной. При уменьшении яркости соответственно уменьшается и ток потребления, что весьма удобно, когда максимальная освещенность не нужна.

Так при испытании устройства с лампой мощностью 13 Вт при максимальной яркости от 12-ти вольтового аккумулятора, оно потребляло ток порядка 800 мА, а при минимальной – всего 70 мА.

При повторении схемы транзистор VT1, роль которого может выполнять КТ805А или КТ847А, нужно установить на теплоотвод площадью не менее 15 см 2 . Для изготовления трансформатора Т1 использовался броневой сердечник Б30 из феррита М1500НМ3, чашки которого собирались с зазором в 0.2 мм.

Обмотка I выполняется сложенным вдвое проводом ПЭВ-2 диаметром 0.38 мм и содержит 24 витка (для 12-ти вольтового аккумулятора) или 12 витков (для аккумулятора в 6 вольт). Обмотка II содержит 7 витков того же провода, но одиночного. Обмотка III наматывается проводом ПЭВ-2 0.18 и содержит 180 витков.

По материалам «Радио» №5, 2005 г.

Источник

Преобразователь напряжения для питания люминесцентной лампы

Этот преобразователь можно использовать для питания люминесцентных ламп мощностью до 20 Вт от аккумулятора или другого автономного источника напряжением 6. 12 В, например, в походных условиях. Его схема, подобная широко используемым во многих импортных портативных люминесцентных светильниках с батарейным питанием, показана на рис. 1.

Основа преобразователя — блокинг-генератор на транзисторе VT1 и трансформаторе Т1 — формирует короткие импульсы частотой 30. 40 кГц и амплитудой 400 В, которые поступают на люминесцентную лампу EL1. Благодаря высокой частоте импульсов и инерционности люминофора мигание лампы совершенно незаметно.

При регулировке частоты с помощью переменного резистора R2 длительность импульсов остается постоянной. Изменяется их скважность, а с ней —яркость свечения лампы. Чем большее сопротивление введено, тем ниже частота и больше скважность, меньше яркость лампы и ток, потребляемый от источника питания (например, автомобильного аккумулятора). Во время испытания преобразователя с лампой F13W ток был равен 70 мА при минимальной и 800 мА при максимальной яркости.

Регулятор собран на односторонней печатной плате размерами 35×85 мм, фрагмент которой изображен на рис. 2.

На остальной ее части находятся (приклеены или укреплены винтами) трансформатор Т1 и транзистор VT1 с теплоотводом. Корпус переменного резистора R2 после пайки выводов также фиксируют клеем. Внешний вид смонтированной платы показан на рис. 3.

Ее помещают в корпус подходящего размера из изоляционного материала, выведя ось переменного резистора в отверстие на передней стенке. Лампу EL1 можно установить в стандартную или изготовленную самостоятельно из подручных материалов арматуру.

Вместо транзистора КТ841А можно применить КТ805А или КТ847А. Площадь теплоотвода должна составлять не менее 15 см2.

Магнитопровод трансформатора Т1 — броневой Б30 из феррита М1500НМ3. Он собран с немагнитным зазором 0,2. 0,5 мм. Обмотка I — 24 витка ПЭВ-2 0,38. 0,41 мм (в два провода), II — 7 витков такого же, но одиночного провода, III — 190 витков провода ПЭВ-2 0,18. 0,2 мм. Последнюю надежно изолируют от других обмоток и магнитопровода лакотканью или изоляционной лентой.

К преобразователю можно подключать любые люминесцентные лампы мощностью 4. 20 Вт, в том числе с перегоревшими нитями накаливания. Если мощность лампы менее 10 Вт, число витков обмотки III следует уменьшить.

Преобразователь сможет работать и при меньшем (вплоть до 6 В) напряжении питания, если число витков обмотки II уменьшить пропорционально напряжению. Однако его КПД заметно снижается, поэтому использовать лампы мощностью более 10 Вт в этом случае не рекомендуется.

При налаживании преобразователя резистор R1 подбирают таким образом, чтобы в правом (по схеме) положении движка переменного резистора R2 яркость свечения лампы субъективно воспринималась как номинальная, соответствующая ее подключению к сети по типовой схеме с «балластным» дросселем. Если перевод движка в противоположное положение уменьшает яркость недостаточно или чрезмерно, номинал переменного резистора следует соответственно увеличить или уменьшить.

Источник

Простой преобразователь напряжения для питания люминесцентной лампы

В технической литературе описано множество схем преобразователей напряжения для питания люминесцентных ламп, однако для большинства из них необходимо самостоятельно изготавливать трансформатор. Автор предлагает свой вариант преобразователя с использованием в качестве трансформатора телевизионного TBC (выходного строчного трансформатора — «строчника») типа ТВС-110ЛА от черно-белого телевизора с небольшой доработкой.

Преобразователь обеспечивает работу люминесцентной лампы от источника питания напряжением 12 В. Он обеспечивает зажигание и горение люминесцентных ламп мощностью от 6 до 40 Вт. Особенностью устройства является то, что оно может работать с люминесцентной лампой, у которых оборваны (сгорели) нити накала.

Читайте также:  Питание для людей с проблемой с сердцем

Принципиальная электрическая схема преобразователя показана на рисунке. Как видно из схемы, основой устройства является классический мультивибратор. В качестве трансформатора преобразователя использован ТВС-110ЛА с небольшой доработкой. В трансформаторе снимается крепежная алюминиевая пластина и вместо этой пластины устанавливается полоска стеклотекстолита, в котором необходимо просверлить два отверстия под шпильки.

Схема преобразователя напряжения для питания люминесцентной лампы

Разбирать TBC не нужно, разве что снять высоковольтную обмотку, но это необязательно. Затем ферритовый стержень вместе с установленной полоской необходимо обвернуть плотной бумагой и намотать 16 витков в два провода ПЭВ-2 диаметром 0,8 мм — это и будут обмотки I и II, которые необходимо соединить последовательно синфазно, т.е. соединив конец первой обмотки с началом второй. Остальные обмотки TBC используются без изменений. Количество витков обмоток ТВС-110ЛА, в соответствии с [1], такое:

  • высоковольтная обмотка: 1200 витков провода ПЭВ-2 диаметром 0,1 мм;
  • обмотка III (выводы 4-9) содержит 960 витков, из них обмотка 4-5 — 80 витков провода ПЭВ-2 диаметром 0,41 мм, остальные — ПЭВ-2 диаметром 0,23 мм;
  • обмотка IV (выводы 1 -3) — 96 витков ПЭВ-2 0,23 мм.

Для питания люминесцентной лампы применено две последовательно включенных обмотки III и IV.

Если возникнет необходимость увеличить выходное напряжение, то для этого следует уменьшить количество витков обмоток I и II, но оставить не меньше 10 витков. Транзисторы VT1, VT2 необходимо установить на радиаторах с S=50 см 2 . Вместо транзистора КТ808А можно применить транзисторы КТ805 с любыми буквенными индексами.

Питать преобразователь можно от аккумулятора типа ТР7-12 (12 В, 7 А·ч).

В заключение заметим следующее:

  • как показывают эксперименты, высоковольтная обмотка (V) также подходит для питания люминесцентной лампы;
  • если в трансформаторе неисправна высоковольтная обмотка, то ее лучше удалить.

Литература

  1. Кузнец Л.М., Соколов B.C. Узлы телевизионных приемников. Справ. — М.: Радио и связь, 1987.
  2. Брежнева K.M. и др. Транзисторы для аппаратуры широкого применения. Справ. — М.: Радио и связь. 1981.

Автор: Святослав Бабын, пгт Кельменцы, Черновицкой обл.

Источник: Радиоаматор № 2, 2015

Источник



Преобразователь для лампы дневного света

Дата: 01.10.2015 // 0 Комментариев

Бывают случаи в жизни, когда позарез необходим низковольтный источник питания для люминесцентных ламп. Такой светильник может питаться от аккумуляторной батареи в походе или на даче, а также с легкостью может найти свое применение в гараже и в быту, способен запустить даже сгоревшую люминесцентную лампу.

Энергосберегающая лампа от низковольтного источника питания – схема

Преобразователь напряжения для для лампы дневного света условно состоит из трех частей.

  • Задающий генератор прямоугольных импульсов на микросхеме К155ЛА3 или К555ЛА3 (можно брать и любой другой аналог). Наш генератор собран на К555ЛА3.
  • Полевой транзистор IFRZ44N, управляемый генератором, в нагрузке которого включена обмотка трансформатора
  • Повышающий трансформатор

Генератор прямоугольных импульсов на микросхеме К155ЛА3 управляется с помощью построечного резистора R1. На выход генератора подключен транзистор Т1 КТ315 со светодиодом, который визуально поможет контролировать частоту и работу генератора.

При разной частоте будут меняться режимы работы транзистора и трансформатора, соответственно с разной яркостью будет светиться люминесцентная лампа. Построечным резистором необходимо выбрать ту частоту, при которой будет оптимальный баланс между током, протекающим через транзистор Т2 и яркостью свечения лампы дневного света. Частота составит примерно 70 — 120 Гц.

Преобразователь для лампы дневного света — сборка

Для демонстрации работоспособности схемы она была собрана на макетной плате. Питается схема от блока питания макетной платы — 5В. Трансформатор снят с блока питания и включен наоборот, т.е. обмотка с большим количеством витков отходит к контактам люминесцентной лампы. Транзистор в процессе работы греется, желательно установить его хоть на небольшой радиатор. За час работы с радиатором он стал просто теплым.

Самой первой нашей испытуемой лампой стала лампа на 8 ВТ. Свечение вполне яркое, ее яркость немного отличается, от включения стандартным способом.

Вторая лампа на 18 Вт, загорелась, но очень тускло. Мощности, которую выдает этот преобразователь напряжения для такой люминесцентной лампы явно недостаточно.

В общем, учитывая простоту этой схемы ее можно смело рекомендовать для сборки. При необходимости схему можно питать и от 12 В, но в таком случае обязательно необходим стабилизатор на 5 В для питания микросхемы.

Источник