Меню

Системы питания контактной сети троллейбуса



Системы питания контактной сети троллейбуса

Отличия в конструкции контактной сети троллейбуса обусловлены тем, что в отличие от рельсового транспорта троллейбус не имеет постоянного электрического контакта с поверхностью, которую можно было бы использовать в качестве второго провода, а также требованием манёвренности — троллейбусу нужна возможность отклоняться от контактной сети как минимум на соседнюю полосу движения. В связи с этим возникли следующие особенности:

  • Контактная сеть троллейбуса — двупроводная, причём провода закреплены на небольшом расстоянии и должны быть надёжно изолированы друг от друга. Это предполагает более сложную конструкцию как прямых участков сети, так и пересечений и разветвлений с широким применением секционных изоляторов, которые изолируют друг от друга не только секции электропитания, но и провода разной полярности в местах пересечения.
  • Невозможно использовать дуговой токоприёмник и пантограф. В основном используется штанга. Существовали и другие конструкции токоприёмников для троллейбуса, в основном соединяющие троллейбус с контактной сетью гибким проводом, но по большей части они не ушли дальше экспериментальных линий. (Правда уже созданы «широкие» конструктивные схемы контактных сетей с довольно широко подвешенными относительно друг друга контактными проводами, и рассчитанные на использование двухполозовых пантографов. Полозы на таких пантографах установлены в линию на общей раме и изолированы друг от друга и контактируют каждый со своим проводом.)

В свою очередь, необходимость использования штангового токоприёмника диктует дополнительные требования:

  • Необходимость сглаживания поворотов контактной сети. Угол излома в местах крепления провода к спецчасти не должен превышать 4° [1] . Для сглаживания поворотов используются специальные кривые держатели.
  • Особые конструкции пересечений проводов, как троллейбусных линий между собой, так и с трамвайными линиями.
  • Необходимость установки специальных стрелок, причём расходящиеся стрелки обязательно должны быть управляемыми.
  • Более сложная конструкция термокомпенсаторов. Иногда, чтобы не устанавливать сложные устройства термокомпеснации применяют маятниковую подвеску, либо проводят ручные сезонные регулировки натяжения проводов.

Все эти особенности делают контактную сеть троллейбуса более сложной и тяжёлой, и нагрузка на опоры значительно больше, и, следовательно, строже требования к самим опорам.

Технические требования

Требуемая высота контактных проводов над уровнем дорожного полотна должна быть в точках подвешивания 5,7±0,1 м. Допускаются отступления от требуемой высоты подвешивания контактных проводов над уровнем дорожного полотна внутри зданий троллейбусных парков до 5,2 м, в воротах зданий троллейбусных парков —до 4,7 м и под искусственными сооружениями — до 4,2 м с соблюдением требований плавного изменения высоты подвешивания контактных проводов.При этом провод с напряжением положительной полярности располагается ближе к центру проезжей части, а отрицательной — ближе к тротуару.

Напряжение в контактной сети троллейбуса в большинстве случаев составляет 600 [1] [2] вольт, падение напряжения в любой точке контактной сети не должно превышать 15%. [1]

Основные части

Основными элементами контактной сети являются:

  • Опоры и опорные конструкции
  • Контактные подвески
  • Арматура и спецчасти
  • Контактные, питающие и усиливающие провода

В качестве опоры для контактной сети могут использоваться как столбы, рассчитанные на вес контактной сети, так и стены зданий и сооружений. Могут использоваться железобетонные или металлические столбы различных видов, которые могут также служить опорами уличного освещения. Крепление контактной подвески к стенам зданий осуществляется с использованием шумо- и виброгасителей.

К специальным частям контактной сети относятся:

  • Троллейбусные стрелки
  • Троллейбусные и трамвайно-троллейбусные пересечения
  • Секционные изоляторы
  • Кривые держатели
  • Стыки компенсируемых проводов
  • Шумогасители

Виды подвески контактной сети

Простая некомпенсированная подвеска на гибких поперечинах

1- контактный провод; 2 — поперечный трос; 3 — опора; 4- хомут; 5- пряжечный изолятор; 6-изолятор из дельта-древесины

Достоинства: простота, небольшие расходы на постройку.

Недостатки: значительное провисание проводов, плохая эластичность сети.

Такая подвеска проста в сооружении но сложна в обслуживании. При использовании такой подвески провисание контактного провода больше всего сказывается на износе токоприемников и контактного провода, поэтому опоры приходится располагать достаточно часто, а кроме того, более тщательно контролировать натяжение контактного провода.

В настоящее время такая подвеска используется лишь на участках с малой скоростью движения (в частности: в депо, на разворотных кольцах конечных остановок, поворотах, ответвлениях (в том числе для перехода на др. троллейбусную линию)).

Читайте также:  Питание при артрозе шейного отдела позвоночника

Поперечно-цепная некомпенсированная подвеска

Преимущество такой подвески в том, что троллейбус на ней может развивать бо́льшую скорость чем на простой — до 50км/ч. Такую подвеску можно применять при большом расстоянии между опорами, при этом она лучше обеспечивает горизонтальное расположение контактных проводов.

Однако доступная максимальная скорость ограничивает сферу применения данной схемы подвески участками не требующими скорости движения свыше 50км/ч, и потому в настоящее время практически не используется на магистральных троллейбусных линиях (особенно скоростных).

Продольно-цепная подвеска на кронштейне

(может выполняться компенсированной и некомпенсированной, а также на гибких поперечинах)

1-распорка; 2-кронштейн; 3-продольный трос; 4-контактный провод

Достоинства: хорошая эластичность, хороший контакт. Доступность высоких (до 100-120 км/ч) скоростей движения. В настоящее время в Российской Федерации — основная схема подвески контактных проводов на магистральных троллейбусных линиях (в том числе скоростных).

Недостатки: большая сложность, вес.

Вариант крепления контактного провода на кронштейне при повороте линии

Часто такой вариант подвески комбинируется с продольно-цепной для предотвращения перемещения проводов в горизонтальной плоскости. Такой вариант подвески используется только при достаточно малом угле (не более 5°) излома (угле поворота) линии. Может проходится от относительно большой (около 60 км/ч) скорости.

Недостаток: неприменимость при относительно больших (более 5°) углах излома линии.

Маятниковая подвеска

Позволяет исключить как сезонные регулировки натяжения контактных проводов, так и сложные механизмы стабилизации натяжения. Кроме того она обеспечивает достаточно хорошую эластичность контактной сети. Наиболее выгодно использовать такую схему подвески в регионах с резко континентальным климатом (с большой (более 40°С) годовой амплитудой температуры атмосферного воздуха).

Типовые исполнения полужёстких подвесов контактной сети троллейбуса.

1-подвес неизолированный двуплечий (ПНД); 2-место закрепления контактного провода; 3-изолятор из дельта-древесины; 4-пряжечный изолятор

Источник

Как получает питание городской и междугородний электрический транспорт

Городской и междугородний электротранспорт стали для современного человека привычными атрибутами его повседневной жизни. Мы давно уже не задумываемся о том, как этот транспорт получает питание. Все знают, что автомобили заправляют бензином, педали велосипедов крутят ногами велосипедисты. Но как же питаются электрические виды пассажирского транспорта: трамваи, троллейбусы, монорельсовые поезда, метро, электропоезда, электровозы? Откуда и как подается к ним движущая энергия? Давайте поговорим об этом.

В былые времена каждое новое трамвайное хозяйство было вынуждено иметь собственную электростанцию, поскольку электрические сети общего пользования еще не были в достаточной степени развиты. В 21 веке энергия для контактной сети трамваев подается от сетей общего назначения.

Питание осуществляется постоянным током относительно невысокого напряжения (550 В), которое было бы просто не выгодно передавать на значительные расстояния. По этой причине вблизи трамвайных линий размещены тяговые подстанции, на которых переменный ток из сети высокого напряжения преобразуется в постоянный ток (с напряжением 600 В) для контактной сети трамвая. В городах, где ходят и трамваи и троллейбусы, данные виды транспорта обычно имеют общее энергохозяйство.

На территории бывшего Советского Союза представлены две схемы электроснабжения контактных сетей для трамваев и троллейбусов: централизованная и децентрализованная. Централизованная появилась первой. В ней крупные тяговые подстанции, оснащенные несколькими преобразовательными агрегатами, обслуживали все прилегающие к ним линии, или линии, находящиеся на расстоянии до 2 километров от них. Подстанции данного типа располагаются сегодня в районах высокой плотности трамвайных (троллейбусных) маршрутов.

Децентрализованная система начала формироваться после 60-х годов, когда стали появляться вылетные линии трамваев, троллейбусов, метро, как то из центра города вдоль шоссе, в отдаленный район города и т. п.

Здесь на каждые 1-2 километра линии установлены тяговые подстанции малой мощности с одним или двумя преобразовательными агрегатами, способные питать максимум два участка линии, причем каждый участок на конце может подпитываться соседней подстанцией.

Так потери энергии оказываются меньше, ибо фидерные участки выходят короче. К тому же если на одной из подстанций случится авария, участок линии все равно останется под напряжением от соседней подстанции.

Читайте также:  Пример питания для сжигания жира для девушек

Контакт трамвая с линией постоянного тока осуществляется через токоприемник на крыше его вагона. Это может быть пантограф, полупантограф, штанга или дуга. Контактный провод трамвайной линии обычно подвешен проще, чем железнодорожный. Если используется штанга, то воздушные стрелки устроены подобно троллейбусным. Отвод тока обычно осуществляется через рельсы — в землю.

У троллейбуса контактная сеть разделена секционными изоляторами на изолированные друг от друга сегменты, каждый из которых присоединен к тяговой подстанции при помощи фидерных линий (воздушных или подземных). Это легко позволяет производить избирательное отключение отдельных секций для ремонта в случае их повреждения. Если неисправность случится с питающим кабелем, возможна установка перемычек на изоляторы, чтобы запитать пострадавшую секцию от соседней (но это нештатный режим, связанный с риском перегрузки фидера).

Тяговая подстанция понижает переменный ток высокого напряжения от 6 до 10 кВ и преобразует его в постоянный, с напряжением 600 вольт. Падение напряжения на любой точке сети, согласно нормативам, не должно быть более 15%.

Троллейбусная контактная сеть отличается от трамвайной. Здесь она двухпровдная, земля не используется для отвода тока, поэтому данная сеть устроена сложнее. Провода располагаются друг от друга на небольшом расстоянии, поэтому требуется особо тщательная защита от сближения и замыкания, а также изоляция на местах пересечений троллейбусных сетей между собой и с трамвайными сетями.

Поэтому на местах пересечений устанавливаются специальные средства, а также стрелки на местах ветвлений. Кроме того выдерживается определенное регулируемое натяжение, предохраняющее от захлестов проводов во время ветра. Вот почему для питания троллейбусов используются штанги — другие приспособления просто не позволят соблюсти все эти требования.

Штанги троллейбусов чувствительны к качеству контактной сети, ведь любой ее дефект может послужить причиной соскока штанги. Есть нормы, согласно которым угол излома в месте крепления штанги не должен быть более 4°, а при повороте на угол более 12° устанавливаются кривые держатели. Токосъемный башмак движется вдоль провода и не может поворачивать вместе с троллейбусом, поэтому здесь необходимы стрелки.

Во многих городах земного шара с недавних пор ходят монорельсовые поезда: в Лас-Вегасе, в Москве, в Торонто и т.д. Их можно встретить в парках развлечений, в зоопарках, монорельсы используются для обзора местных достопримечательностей, и, конечно, для городского и пригородного сообщения.

Колеса таких поездов изготовлены вовсе не из чугуна, а из литой резины. Колеса просто направляют монорельсовый поезд вдоль бетонной балки — рельсы, на которой находится колея и линии (контактный рельс) силового электропитания.

Некоторые монорельсовые поезда устроены таким образом, что как-бы насажены на колею сверху, подобно тому, как человек сидит верхом на лошади. Некоторые монорельсы подвешиваются к балке снизу, напоминая гигантский фонарь на столбе. Безусловно, монорельсовые дороги более компактны чем обычные железные дороги, но их строительство обходится дороже.

Некоторые монорельсы имеют не только колеса, но и дополнительную опору на основе магнитного поля. Московский монорельс, например, движется как раз на магнитной подушке, создаваемой электромагнитами. Электромагниты находятся в подвижном составе, а в полотне направляющей балки — стоят постоянные магниты.

В зависимости от направления тока в электромагнитах подвижной части, монорельсовый поезд движется вперед или назад по принципу отталкивания одноименных магнитных полюсов — так работает линейный электродвигатель.

Кроме резиновых колёс у монорельсового поезда есть ещё и контактный рельс, состоящий из трёх токоведущих элементов: плюс, минус и земля. Напряжение питания линейного двигателя монорельса — постоянное, равное 600 вольт.

Электропоезда метрополитена получают электричество от сети постоянного тока — как правило, от третьего (контактного) рельса, напряжение на котором составляет 750—900 Вольт. Постоянный ток получают на подстанциях из переменного тока с помощью выпрямителей.

Контакт поезда с контактным рельсом осуществляется через подвижный токосъемник. Располагается контактный рельс права от путей. Токосъемник (так называемая «токоприемная лапа» ) находится на тележке вагона, и прижимается к контактному рельсу снизу. Плюс находится на контактном рельсе, минус — на рельсах поезда.

Читайте также:  Меню для комплексного питания

Кроме силового тока, по путевым рельсам течет и слабый «сигнальный» ток, необходимый для работы блокировки и автоматического переключения светофоров. Также по рельсам передается информация в кабину машиниста о сигналах светофоров и разрешенной скорости движения поезда метро на данном участке.

Электровозом называют локомотив, движимый тяговым электродвигателем. Двигатель электровоза получает питание от тяговой подстанции через контактную сеть.

Электрическая часть электровоза в целом содержит не только тяговые двигатели, но и преобразователи напряжения, а также аппараты, подключающие к сети двигатели и прочее. Токоведущее оборудование электровоза находится на его крыше или капотах, и предназначено для соединения электрооборудования с контактной сетью.

Токосъем с контактной сети обеспечивают токоприемники на крыше, далее ток подается через шины и проходные изоляторы — к электрическим аппаратам. На крыше электровоза присутствуют и коммутирующие аппараты: воздушные выключатели, переключатели родов тока и разъединители для отключения от сети в случае неполадки токоприемника. Через шины ток подается на главный ввод, к преобразующим и регулирующим аппаратам, на тяговые двигатели и другие машины, далее — на колесные пары и через них — на рельсы, в землю.

Регулировка тягового усилия и скорости движения электровоза достигается изменением напряжения на якоре двигателя и варьированием коэффициента возбуждения на коллекторных двигателях, или подстройкой частоты и напряжения питающего тока на асинхронных двигателях.

Регулирование напряжения выполняется несколькими способами. Изначально на электровозе постоянного тока все его двигатели соединены последовательно, и напряжение на одном двигателе восьмиосного электровоза составляет 375 В, при напряжении в контактной сети 3 кВ.

Группы тяговых двигателей могут быть переключены с последовательного соединения — на последовательно-параллельное (2 группы по 4 двигателя, соединённых последовательно, тогда напряжение на каждый двигатель — 750 В), либо на параллельное (4 группы по 2 последовательно соединенных двигателя, тогда напряжение на один двигатель — 1500 В). А для получения промежуточных значений напряжений на двигателях, в цепь добавляются группы реостатов, что позволяет регулировать напряжение ступенями по 40—60 В, хотя это и приводит к потере части электроэнергии на реостатах в виде тепла.

Преобразователи электроэнергии внутри электровоза необходимы для изменения рода тока и понижения напряжения контактной сети до необходимых величин, соответствующих требованиям тяговых электродвигателей, вспомогательных машин и прочих цепей электровоза. Преобразование осуществляется прямо на борту.

На электровозах переменного тока для понижения входного высокого напряжения предусмотрен тяговый трансформатор, а также выпрямитель и сглаживающие реакторы для получения постоянного тока из переменного. Для питания вспомогательных машин могут устанавливаться статические преобразователи напряжения и тока. На электровозах с асинхронным приводом обоих родов тока применяются тяговые инверторы, которые преобразуют постоянный ток в переменный ток регулируемого напряжения и частоты, подаваемый на тяговые двигатели.

Электропоезд или электричка в классическом виде берет электричество с помощью токоприемников через контактный провод или контактный рельс. В отличие от электровоза, токоприемники электрички располагаются как на моторных вагонах, так и на прицепных.

Если ток подается на прицепные вагоны, то моторный вагон получает питание через специальные кабели. Токосъем обычно верхний, с контактного провода, осуществляется он токосъемниками в форме пантографов (похожих на трамвайные).

Обычно токосъем однофазный, но существует и трёхфазный, когда электропоезд использует токоприёмники специальной конструкции для раздельного контакта с несколькими проводами или контактными рельсами (если речь идет о метро).

Электрооборудование электрички зависит от рода тока (бывают электропоезда постоянного тока, переменного тока или двухсистемные), типа тяговых двигателей (коллекторные или асинхронные), наличия или отсутствия электрического торможения.

В основном электрическое оборудование электропоездов схоже с электрооборудованием электровозов. Однако на большинстве моделей электропоездов оно размещено под кузовом и на крышах вагонов для увеличения пассажирского пространства внутри. Принципы управления двигателями электропоездов примерно те же, что и на электровозах.

Источник