Меню

Стабилизированное питание для цап



Линейный блок питания для ЦАП Topping D50 и других

Вы купили новый прекрасный ЦАП на просторах китайкой народно республики, вскрываете коробку, а внутри лежит, нечто напоминающее зарядку от телефона.

И это та самая штука, что должна обеспечить ваш ЦАП хорошим питанием, для получения максимального качества звучания?

А есть примеры и более интересные, когда вы открываете коробку с ЦАП Topping D50, а блока питания внутри вообще нет, только указывается, что нужно обеспечить питание 5V 1A и лежит короткий проводок посредством которого вы можете взять питания для ЦАП с USB-порта вашего компьютера.

Качественное питание заметно влияет на качество звучания – такие эксперименты проводил и я – смотрите видеообзор ЦАП SU0 XMOS U8 на AK4490 и конечно же другие любители Hi-Fi.

С хорошим питанием в ЦАП SU0 заметно повышалась ясность звучания.

В тот раз я специально для SU0 соорудил самодельный линейный блок питания, о чем рассказывалось в обзоре ЦАП и его питание .

SU0 требовалось 9 вольт, и это было достигнуто использованием стабилизатора LM7809.

ЦАП SU0 у меня давно уже нет, но возникла проблема с новым ЦАП Topping D50, с которым в комплекте не было никакого блока питания.

Я попробовал разные телефонные зарядки – они ожидаемо звучали удручающе мутно, поэтому решил переделать старый линейный блок питания с 9 на 5 вольт.

Посмотрите на прежнее творение очумелых ручек – часть конденсаторов (шунтирующих) с обратной стороны платы.

А теперь вопрос, что нужно сделать, чтобы переделать этот блок питания с 9 вольт на 5?

Заменить стабилиpатор LM7809 выдающий стабилизированные 9 вольт на стабилизатор LM7805 выдающий стабилизированные 5 вольт.

Работа стабилизатора LM78xx проста – вы подаете на него постоянное напряжение, а на выходе получаете заявленное значение.

Только имейте ввиду, что сам чип LM7805 потребляет от 1 во 2,5 вольт, в зависимости от нагрузки, поэтому можно считать, что для его нормальное работы, чтобы он выдал заявленные точные 5 вольт нужно подать на него напряжение минимум 5+2 = 7 вольт, а лучше и 8.

R-Core трансформатор лежащий в основе моего линейного хенд-мейд блока питания имел выводы на 9 вольт 0,8А.

Соответственно когда он использовался в линейном блоке питания (ЛБП) на 9 стабилизированных вольт, как это получалось?

Трансформатор выдает 9 вольт, но переменного тока, а стабилизатору LM78xx, да и вашему ЦАП нужен постоянный ток на 9 вольт, поэтому после трансформатора мы должны преобразовать переменный ток в постоянный.

Для этого используется диодный мост, который разруливает положительный и отрицательный ток по разным направлениям, в результате после него мы получаем выпрямленный ток с + и – на конкретных проводах. В результате преобразования переменного тока в постоянный значение напряжения увеличивается на 1,4142 разу. И следовательно скромные 9 вольт переменного тока превращаются в 9*1,4142=12,7 вольт постоянного тока.

Что происходило ранее в ЛБП.

После диодного мостика стабилизатор LM7809 получал 12,7 вольт. 2-2,5 вольта ему нужно было для своей работоспособности, соответственно оставались лишние 12,7 -2,5 (работа LM7809 – 9 вольт стабилизированного) =1,2 вольт, а учитывая, что сила тока 0,8 А, то это была мощность в 1,2*0,8=0,96 или 1 ватт, которые рассеивались в воздух через радиатор. 1 ватт – это мало, и используемый радиатор был чуть теплый.

Но посмотрите, как изменилась задача – в существующей схеме мы хотим заменить лишь чип LM7809 на LM7805.

Теперь 12,7 вольта трансформатора будет потрачено на 2,5 вольта работы + 5 вольт стабилизированного питания итого:

12,7 – 5 -2,5 = 5 вольт * 0,8= 4 ватт

Теперь нужно будет рассеивать уже 4 ватта тем же радиатором.

И здесь уже я столкнулся с тем, что радиатор стал греться так сильно, что я с трудом мог держаться за него больше 30 секунд.

Я решил, что запас прочности работы стабилизатора заложен высокий, поэтому пусть греется, а “итак сойдееет!”

В результате через небольшое время – несколько дней на попытку включения ЦАП Topping D50 я не увидел приветственных надписей, ЦАП не включался. Я замерил ЛБП и ожидаемо обнаружил, что напряжение на его выходе нет – блок питания сломался.

Я посмотрел в закромах на предмет нахождения более мощного радиатора и нашел радиатор, который когда-то охлаждал транзистор в усилителе Вега У-122С, но попытка засунуть его в тонкий корпус от CD-ROM оказалась неудачной.

Так как повторить конструкцию не составляет никаких сложностей, я решил сделать все с нуля в корпусе от компьютерного блока питания.

А раз так, то и трансформатор я взял другой – ТПП-261.

В нем можно было объединить пару обмоток по 2,6 вольта 0,475 А.

Я объединил последовательно две обмотки 19-20 и 21-22 получив 2,6+2,6=5,2 вольт переменного тока, но посчитал, что и сила тока двухкратно увеличится до 0,475+0,475 = 0,95.

Это НЕВЕРНО.

При последовательном соединении обмоток (конец одной обмотки соединяем с началом другой, а напряжение снимаем с краев объединенной обмотки) напряжение обмоток суммируется, но сила тока остается неизменной.

В итоге я получил 5,2 вольта но с все теми-же 0,475А, а для Topping D50 нужно 1А (хотя и на 0,8А работало).

Читайте также:  Питание при гастрите рефлюкс эзофагите

Есть другой трюк – параллельное соединение обмоток – тогда при параллельном соединении обмоток (они должны быть одинаковые, на одинаковое напряжение) напряжение не изменяется, а вот сила тока суммируется. Как видите, такого варианта, чтобы и напряжение и ток суммировались одновременно нет, или то, или другое.

Эту ошибку я не сразу понял, а собрал блок питания, замерил – ЛБП выдавал 4,8 вольта. Да, немного меньше 5, но у LM78хх есть определенная погрешность точности, а может и напряжение немного не хватило, ведь:

7,35 – 2,5 на работу чипа-5=-0,146

Как видите, конструкция получилась ошибочной.

Я включил Topping D50, он заиграл, и довольно хорошо, но через 30-60 секунд вдруг выключился.

Я снова включил – та же история.

Я не понял проблемы, ибо ошибочно считал, что сила тока 0,95А и решил, что используемый трансформатор не совсем исправен.

Поэтому я подобрал другой, еще менее мощный (а для ЦАП больших мощностей и не требуется) – ТПП-247, зато более маленький и аккуратный, вообще проигнорировав силу его тока, ослепленный парой обмоток с требуемым в сумме напряжением 2,59+2,58=5,17 вольта.

А вот сила тока была лишь 0,223А и как вы понимаете, последовательное соединение обмоток 19-20 + 21-22 увеличивало (суммировало) лишь напряжение, но не ток.

В итоге я собрал снова линейный блок питания – замерил напряжение на выходе мультиметром и получил 4,8 вольта.

Подключил к Topping D50 и ЦАП даже не захотел включаться и тут то, что-то и щелкнуло в моей голове и я посмотрел на силу тока, которая была в 5 раз ниже требуемой.

Сила тока – это работа, которую можно выполнить, но в данном случае такой хилый работник был неспособен включиться даже слабенький по потреблению ЦАП.

В третий раз, устав уже разбирать свой хендмейд блок питания, и жадничать, я взял уже приличный трансформатор ТПП-268.

Сила тока этого источника питания 1,62А, с запасом для Topping D50.

Я объединил обмотки последовательно 19-20 + 21-22 и получил 5,12 вольта или 5,12*1,4142=7,24 вольта выпрямленного тока.

Итого на выходе получилось опять 4,8 вольта.

Включив Topping D50 я наконец смог спокойно слушать его в качестве, а блок питания не грелся.

Я думаю, кто-то сейчас скажет – фу-фу-фу использовать LM78xx, нормальные люди делают на транзисторах и тд.

На самом деле есть разные подходы, цель которых – получить стабилизированное питание.

LM78xx прекрасно подходит для случаев, когда потребителю нужен ток в пределах 1 Ампера. Даташит указывает, что максимум 1,5А для LM78xx.

Т.е. очень большое количество устройств будут отлично работать с LM78xx и “лучше” им не нужно.

А что такое “лучше” – давайте разберемся.

Смотрите – вы радиолюбитель-производитель, решили выпускать линейный блок питания.

Вы его делаете на LM7805 для 5 вольт 1А.

Но новый заказчик просит вас ЛБП на 9 или 12 вольт.

И вы паяете новые радиокомопоненты на плату + приходится думать о тепловыделении, о перекоммутации обмоток трансформатора и тд, и в какой-то момент вы решаете отказаться от такого варианта ради универсальности.

Вы ставите транзистор и используете другую схему, и теперь вы можете подстроечным резистором задавать нужное напряжение, но вы при этом, раз уж универсальность, и радиатор и трансформатор ставите с запасом на большие значения, а значит покупатель будет просто переплачивать за универсальность, которая ему не нужна до кучи оплачивая и избыточно мощный трансформатор и радиатор и более емкие конденсаторы получая в итоге тот-же результат.

Главный плюс транзисторных схем линейного блока питания – возможность дать потребителю большую силу тока.

Если ваше устройство требует 2-3-5А, то LM78xx вам просто не подойдет по параметрам – он стабилизирует ток с силой не более 1-1,5А.

Можно ли улучшить использованную мной схему линейного блока питания – конечно. Добавить ЕМИ-фильтр, перекоммутировать вторичные обмотки дав немного больше запаса по напряжению и тд – здесь уже наступает элемент творчества.

Но если вы не радиолюбитель и хотите получить блок питания, на который не страшно смотреть и встретив его в темноте вы не обделаетесь, то прекрасным решением будет покупка линейного блока питания в Китае – там все будет красиво и хорошо – заводские платы, красивые корпуса, дисплеи с подсветкой, но и цена будет не 3 копейки, как у самоделки – тут уже выбирать вам.

Оставьте первый комментарий

Оставить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

11 схем питания различной сложности

Сохранить и прочитать потом —

О пользе силикона

В полной мере сказанное относится не только к ламповым проектам, поэтому все, что будет описано ниже, пригодится и для цифровых, и для аналоговых трактов на полупроводниках.

«А в чем, собственно, проблема? Для накала существуют трехвыводные сильноточные стабилизаторы, а анодные делаются либо на тех же лампах, либо на высоковольтных MOSFET’ах», — такова была первая реакция большинства конструкторов аудио, с кем я пытался завести разговор на эту тему. А жизнь, между прочим, не так проста, как кажется на первый взгляд. Любимые всеми интегральные стабилизаторы серий LM78, LM79, LM317 и LM337 очень удобны и стоят копейки, но в технике класса High End применяются крайне редко из-за широкого спектра ВЧ-шумов, которые у них вообще не нормируются. Эти шумы не слышны, но, взаимодействуя с полезным сигналом, становятся причиной интермодуляции. А вот она уже ведет к излишней жесткости на верхних частотах и частичной потере разрешения. Если от такого стабилизатора питаются катоды прямонакальных ламп, особенно входных, вы можете вообще потерять интерес к проекту — вся грязь из сети, изрядно приправленная собственным шумом микросхемы, будет усилена и попадет на выход усилителя. Поэтому серьезные разработчики в последнее время все чаще предпочитают более сложную схемотехнику, но гарантирующую защиту от ВЧ-неприятностей. Что же касается высоковольтных стабилизаторов, то там ситуация еще хуже. Во-первых, в качестве источников эталонного напряжения используются либо кремниевые, либо газоразрядные стабилитроны, и включаются они, как правило, в катод управляющей лампы (или эмиттер транзистора, что существа дела не меняет). Во-вторых, в ламповых усилителях, особенно однотактных, проходной элемент стабилизатора находится в цепи звукового сигнала и вносит в него свой неповторимый акцент. Так что, кроме конденсаторов, усилительных ламп и трансформаторов, вы будете еще слушать какой-нибудь MOSFET или 6С33С. У меня есть подозрение, что аналогичная ситуация наблюдается и в транзисторных усилителях, но сам не экспериментировал, врать не стану.

Читайте также:  Физкультминутка про продукты питания

Начнем с питания низковольтных цепей — накала, смещения и т.д. В каталоге любого крупного производителя полупроводников обязательно есть малошумящие источники опорного напряжения, и некоторые с регулируемым напряжением выхода. У этих стабилитронов только один минус — ток через переход ограничен несколькими миллиамперами, поэтому для сколько-нибудь серьезной нагрузки их придется дополнить внешним проходным транзистором. Наиболее широко распространен чип TL431, выпускаемый фирмой Texas Instruments. Напряжение шумов на его выходе около 7 мкВ на частоте 10 Гц, стоит около 16 руб. и выглядит, как обычный маломощный транзистор в пластмассовом корпусе ТО-92. Очень удачная схема его применения выложена на сайте www.klausmobile.narod.ru (рис.1).

Здесь IC1 служит источником опорного напряжения, а IC2 является датчиком схемы защиты от КЗ выхода. Достоинство схемы в том, что в качестве проходного элемента работает МДП-транзистор с изолированным затвором, поэтому при любой нагрузке (схема нормирована до 5 А) ток через стабилитрон остается в пределах нормы. R3 задает выходное напряжение, а R2 — ток срабатывания защиты. MOSFET может быть любым из серий IRF400 — 600 и устанавливается на теплоотводе. Рассеиваемая на нем мощность подсчитывается по формуле P = (Uвх — Uвых) x Iнагр. Если стабилизатор должен обеспечивать фиксированное напряжение, то его тоже легко рассчитать: Uвых = (1+R1/R2) x Uref, где Uref — опорное напряжение TL431, т.е 2,5 В. Из этого легко видеть, что для получения Uвых = 5 В, например, питания цифровой части ЦАПа, сопротивления R1 и R2 должны быть одного номинала (примерно 3,3 — 6,8 К).

Для слаботочных цепей, например, сеточного смещения или питания ОУ в тракте CD-проигрывателя, очень хороши параллельные стабилизаторы. В них регулирующий элемент включен параллельно нагрузке, что имеет неоспоримые преимущества — по переменному току его сопротивление очень мало, а по постоянному — очень велико. Вам это ничего не напоминает? Правильно, конденсатор, причем без какой-либо абсорбции, утечки, с мизерным ESR и индуктивностью. Короче, почти идеальный. Пример такого стабилизатора показан на рис. 2. Источник опорного напряжения здесь тот же — TL431, и выходное напряжение рассчитывается по той же самой формуле и подстраивается триммером R1. Стабилизация (если кто не знает) происходит за счет падения напряжения на резисторе R0. Номинал R3 выбирается с тем расчетом, чтобы ток через TL431 был в пределах 1 — 3 мА. Еще более очевидны выгоды такой схемы для построения высоковольтных стабилизаторов, но об этом ниже.

На той же TL431 легко собрать схему задержки включения анодного питания (рис. 3). Время задержки задается параметрами цепочки R1/С1 и при указанных номиналах составляет около 25 секунд. Оптрон — 293КП9В или ему подобный.

В схемах дифференциальных каскадов с т.н. long tail отрицательное напряжение для лучшей симметрии следует подавать через источник тока. Часто для этого используют лампы. А если нет места, или трансформатор питания работает на пределе и уже не потянет еще один накал?

Пригодится простенькая схемка на полевом транзисторе (рис. 4). Единственный элемент, на качество которого стоит обратить внимание — электролитический конденсатор в делителе затвора. Он должен быть либо Black Gate, либо Elna Cerafine. Собирается источник тока на крошечной печатной плате и может быть встроен в любой усилитель при апгрейде. Отрицательное напряжение на «хвост» можно получить выпрямлением напряжения накала.

Еще один возможный путь апгрейда — снижение шумов стандартных источников питания. Способ примерно тот же, т.е. шунтирование шины питания активным фильтром с определенными параметрами (рис. 5). Без какой-либо настройки он подавляет ВЧ-составляющую на 20 дБ, а если подобрать резистор в цепи эмиттера, то можно додавить их и до 40 дБ. Потребление тока самим шунтом около 10 мА, так что он вряд ли перегрузит стабилизатор. Если ток в нагрузке более 300 мА, то шунт придется умощнить (рис. 6). Для этого понадобится составной транзистор (КТ825/827 в зависимости от полярности источника), который будет забирать на себя уже около 40 мА. Зато им можно «чистить» сильноточные шины, например накальные. Если в предварительном усилителе или фонокорректоре выносной блок питания, то к сетевым помехам и шумам стабилизатора добавятся ВЧ и СВЧ-наводки на соединительные провода. Частично эта проблема решается с помощью ферритовых колец, надеваемых на жгут или отдельные проводники, но гораздо более заметный эффект дает схема, показанная на рис. 7. Она ставится на приемном конце, т.е. в самом усилителе, и питается от той же шины, которую чистит. ОУ должен быть по возможности малошумящим и широкополосным, к качеству остальных деталей особых требований не предъявляется. На рис. 8 видно, что эффективность подавления шумов на частоте 100 Гц достигает 24 дБ без точного подбора номиналов. Более подробное описание этих шумоподавителей можно найти по адресу www.wenzel.com/documents/finesse.html .

Читайте также:  Продукт питания рапсовое масло

Теперь об анодном питании. В 1998 г. компания Technics начала выпускать усилители DVD Audio Ready, т.е. с расширенным динамическим диапазоном. Для них пришлось разрабатывать новые источники питания, поскольку при имеющихся невозможно было снизить шумы усилителя до нужной величины. Была запатентована схема т.н. виртуальной батареи или, как ее еще называют, схема с умножением емкости. Высоковольтный вариант такой батареи показан на рис. 9 (верхняя часть схемы). Как видите, здесь вообще нет стабилитрона, поэтому, строго говоря, это не стабилизатор, а фильтр с составным проходным элементом. Суть идеи в том, что входное сопротивление МДП-транзистора — несколько сотен мегаом, что позволяет подключить его затвор к RC-цепочке с такой огромной постоянной времени (4,7 мОм и 47 мкФ соответственно), что никакие помехи через нее не проходят. Минусы схемы — уже упомянутое отсутствие стабилизации и очень долгий заряд, время которого составляет примерно 20 мин. Аппарат с таким источником питания вообще выключать не рекомендуется.

Более серьезные люди питают аноды ламп от параллельных стабилизаторов. Помимо перечисленных выше преимуществ, они обладают и еще одним — после выключения питания быстро разряжают емкости фильтров. Кстати, об этом почему-то мало кто заботится, а ведь вреда от этого ничуть не меньше, чем при подаче напряжения на анод холодной лампы. В предах, например, конденсаторы разряжаются несколько минут, а катоды остывают значительно быстрее. Кроме того, шунты начинают потреблять ток мгновенно после включения, благодаря чему фильтр застрахован от перегрузок по напряжению в режиме холостого хода. Схема относительно простого и недорогого шунт-регулятора (рис. 10) содержит мощный высоковольтный MOSFET IRF820 и схему управления на малошумящем ОУ TL-071. Опорное напряжение задается делителем на инвертирующем входе, а напряжение шины питания контролируется через интегрирующую RC-цепочку 1,5 мОм и 1 мкФ. Между выходом ОУ и затвором транзистора стоит режекторный ВЧ-фильтр, вырезающий самый вредный участок шумового спектра. Обратите внимание, что нагрузка подключается к шинам в том месте, где припаяны элементы делителя, еще лучше подключить верхнюю точку интегрирующей цепочки непосредственно к потребителю, например, к анодной обмотке выходного трансформатора. Между выпрямителем и стабилизатором должно быть включено либо сопротивление, на котором будет падать разница напряжений, либо, что значительно лучше, мощный источник тока. Такой, например, как на рис. 11 слева. Это вообще очень интересная схема, ее автор, Манфред Хубер (http://home.t-online.de/home/MHuber/bjtreg.htm) уверен, что она дает тот же эффект, что и тефлоновый конденсатор емкостью 1000 мкФ, включенный параллельно нагрузке. Я пробовал запитывать от этого стабилизатора фонокорректор с выходным трансформаторным каскадом на 4П1Л, разница по сравнению с виртуальной батареей действительно заметна на слух. Во-первых, бас становится более собранным, заметно уменьшается интермодуляция, схема — менее чувствительной к качеству трансформатора. Очевидно, возвратный путь сигнала на землю здесь намного короче, да и выходное сопротивление источника практически не зависит от частоты. Заодно несколько советов: если выходное напряжение не должно регулироваться в широких пределах, дорогие полевые транзисторы BSS135 (около 120 руб. каждый), работающие как источники тока стабилитронов LM4041 и ZPD30, можно заменить обычными сопротивлениями. Их номинал рассчитывают так, чтобы через них протекал ток 1,3 мА. Транзисторы ZTX458/558 фирмы Zetex с напряжением Uкэ = 450 В у нас найти невозможно, зато есть недорогие аналоги Philips и Motorola. Ток стабилизатора рассчитывается по формуле I = 1,23/(P1 + R2), а напряжение вот как: Uвых = 30(1 + (P2 + R9)/R8). Число 30 означает напряжение стабилитрона D4, если будет другой, нужно внести поправку. Стабилитронов здесь бояться не надо — шум D4 гасится цепочкой R5-C2-C5, а D5 выполняет сугубо защитные функции, и в нормальном режиме лавинного пробоя в нем нет. Транзисторы Q2 и Q8 устанавливаются на теплоотводы, способные рассеять 6 — 8 Вт.

Рис. 10
Рис. 11

Приятных вам экспериментов, и будьте осторожнее с высоким напряжением!

Источник