The fuel tank питание




All of the information, photographs & schematics from this website and much more is now available in a 374 page printed book or in electronic format.

*** Updated 23 Nov 2020 ***

Fuel Panels

737-Classic 4-Tank Fuel Panel

NG/MAX Fuel Panel

The maximum declarable fuel capacity for tech log, nav log, etc is 16,200kgs for 3-Tank Classics, 20,800kgs for NG/MAX’s and up to 37,712kgs for BBJ’s depending upon how many tanks the customer has specified (max 12). The AFM limits are higher, but not normally achievable with standard SG’s.

The fuel panels for the various series have not changed much over the years. The NG/MAX’s have separate ENG VALVE CLOSED & SPAR VALVE CLOSED lights in place of FUEL VALVE CLOSED. The -1/200 panel also has blue VALVE OPEN lights similar to that on the crossfeed valve. The FILTER BYPASS lights were FILTER ICING on the 1/200.

The 1/200’s had heater switches; these used bleed air to heat the fuel and de-ice the fuel filter. They were solenoid held and automatically moved back to OFF after one minute.

NG/MAX: The engine spar valves and APU are normally powered by the hot battery bus but have a dedicated battery to ensure that there is always power to shut off the fuel in an emergency.

Fuel Gauges

Analogue Fuel Gauges

-1/200’s and some older -300’s

Digital Sunburst Fuel Gauges — Simmonds 4 Tank

Digital Sunburst Fuel Gauges — Smiths

Fuel Gauge Accuracy

The 737 fuel quantity indication system has the following accuracy tolerances:

FQIS accuracy: +/- 3.0%

FQIS accuracy with digital indicators: +/- 2.5 %
FQIS accuracy with analog indicators: +/- 3.0%

The total tolerance for the FQIS system is based on a full tank. For example, if the fuel tank maximum capacity is 10,000 KG, then the tolerance of the gauging is 0.03 (airplane with analog indicators) * 10000 = 300 KG. The system tolerance is then +/- 300 KG at any fuel level within the tank.

The accuracy of the fuel flow transmitter is a function of the fuel flow. At engine idle, the system tolerance can be 12%. During cruise, the tolerance is less than 1.5%. The fuel flow indication is integrated over time to calculate the fuel used for each engine.

737-600/-700/-800/-900 with densitometer:
FQIS accuracy: +/- 1.0% overall
Main tanks > 50%, -1 to 5 deg pitch, +/- 1 deg roll: +/- 1.5%
Main tanks 50%, -1 to 5 deg pitch, +/- 1 deg roll: +/- 2.5%
Main tanks On the Digital Sunburst fuel gauges, pressing the «Qty test» button will start a self test of the display and the fuel quantity indicating system. After the test, each gauge will display any error codes that they may have.

Note: The gauges are still considered to be operating normally with error codes 1, 3, 5 or 7 on the Simmonds gauges or error codes 1,3 and 6 on the Smiths gauges. ie If the gauge is indicating (rather than zero) the gauge may be used.

Low fuel quantity indication illuminates below either 907 or 453kg

NG fuel gauges can give messages such as LOW, CONFIG or IMBAL

Error Code Fuel Quantity Indicator Reading Probable Cause Gauges considered to be operating normally?
Zero Missing or disconnected tank unit
1 Normal Tank contamination Yes
2 Zero Bad HI-Z lead
3 Normal Bad compensator unit wiring Yes
4 Zero Bad tank unit wiring
5 Normal Bad compensator unit Yes
6 Zero Bad tank unit
7 Normal Contamination/water in compensator Yes
8 Zero Bad fuel quantity indicator
9 Normal or zero Improperly calibrated indicator
Blank Bad fuel quantity indicator

Digital Fuel Quantity Indicator Error Codes — Smiths

Error Code Fuel Quantity Indicator Reading Probable Cause Gauges considered to be operating normally?
1 Normal Open or short in compensator LO-Z wiring Yes
2 Zero Short circuit in compensator unit
3 Normal Too much leakage in compensator unit Yes
4 Zero Open or short circuit in a LO-Z to a tank unit
5 Zero Short circuit in a tank unit
6 Normal Too much leakage in tank unit Yes
7 Zero (or ERR in flight) Calibration unit does not operate correctly
8 Blank An error in the DCTU data
9 Zero (or ERR in flight) A problem with the indicator memory
10 Zero Open or short circuit in the HI-Z line

If a fuel gauge is u/s the quantity must be determined by using the dripsticks (floatsticks in later aircraft). The classics have 5 dripsticks in each wing tank and none in the centre tank. The NG has 6 dripsticks in each wing tank and 4 in the centre tank. Because of cumulative errors it is recommended that the wings are filled once every few sectors to ensure an even fuel balance. In-flight, the GW must be periodically updated to ensure the accuracy of VNAV speeds, buffet margin and max altitude.

Fuel quantity is measured by using a series of capacitors in the tanks with fuel acting as the dielectric. Calibration of the fuel gauges is done by capacitance trimmers, these are adjusted to standardise the total tank capacitance and allows for the replacement of gauges. On older aircraft the trimmers were accessible from the flightdeck (below the F/O’s FMC) but they have since been removed to a safer place!


There are two AC powered fuel pumps in each tank; there are also EDP’s at each engine. Both fuel pump low pressure lights in any tank are required to illuminate the master caution to avoid spurious warnings at high AoA’s or accelerations. Centre tank LP lights are armed only when their pumps are ON.

Leaving a fuel pump on with a low pressure light illuminated is not only an explosion risk (see Thai and Philippine write offs) but also if a pump is left running dry for over approx 10 minutes it will lose all the fuel required for priming which will render it inoperative even when the tank is refuelled. If you switch on the centre tank pumps and the LP lights remain illuminated for more than 19 seconds then this is probably what has happened. The pumps should be switched off and considered inop until they can be re-primed.

On the 1-500’s, the centre tank pumps are located in a dry area of the wing root but on the NG’s the pumps are actually inside the fuel tank (see photo below). This is why only the NG’s are affected by AD 2002-19-52 which requires the crew to maintain certain minimum fuel levels in the center fuel tanks. You can see the location of the centre tank pumps on the forward wall of the wheel well on the NG’s, since the forward wall is actually the back of the centre fuel tank.

Читайте также:  Белковое питание для бодибилдеров

Note: for aircraft delivered after May 2004, centre tank fuel pumps will automatically shut off when they detect a low output pressure.

Right centre tank fuel pump on the forward wall of the wheel well — NG’s only

Centre Tank Scavange Pumps

These transfer fuel from the centre tank into tank 1 at a minimum rate of 100kg/hr, although usually nearer 200kg/hr. The trigger for the scavenge pump is different for the series as follows:

  • Originals: Only fitted after l/n 990 (Dec 1983). Operates the same as the classics.
  • Classics: Switching both centre tank pumps OFF will cause the centre tank scavenge pump to transfer centre tank fuel into tank 1 for 20 minutes.
  • NG’s: The centre tank scavenge pump starts automatically when main tank 1 is half full and its FWD pump is operating. Once started, it will continue for the remainder of the flight.

NB On the classics, when departing with less than 1,000kg of fuel in the centre tank, an imbalance may occur during the climb. This is because the RH centre tank pump will stop feeding due to the body angle so number 2 engine fuel is drawn from main tank 2, while engine 1 is still drawing fuel from the centre tank. When this “runs dry” the scavenge pump will also transfer any remaining centre tank fuel into main tank 1, thereby exacerbating the imbalance.

The APU uses fuel from the number 1 tank. If AC power is available, select the No 1 tank pumps ON for APU operation to assist the fuel control unit, especially during start. Newer –500 series aircraft have an extra, DC operated APU fuel pump in the No 1 tank which operates automatically during the start sequence. The APU burns about 160Kgs/hr with electrics and an air-conditioning pack on and this should be considered in the fuel calculations if expecting a long turnaround or waiting with pax on board for a late slot.

Limitations: Max fuel temp +49 є C, Min fuel temp -45 є C or freezing point +3 є C, whichever is higher. Typical freezing point of Jet A1 is -47 є C. If the fuel temp is approaching the lower limits you could descend into warmer air or accelerate to increase the kinetic heating. Fuel temp is taken from main tank 1 because this will be the coldest as it has less heating from the smaller hydraulic system A.

A fuel sampling and testing kit is kept on the flight deck of all aircraft to test for water.

The NG series are prone to «Upper Wing Surface Non-environmental Icing» or «Cold Soaked Fuel Frost» CSFF. This is due to cold soaked fuel causing frost to form on the wings during the turnarounds — even in warm conditions! From July 2004 NGs have been delivered with markings on the upper surface of the wings where this frost is allowable for despatch under the following conditions:

Takeoff with CSFF on the upper wing surfaces is permissible, provided the following are met:

  • the frost on the upper surface is less than 1/16 inch (1.5 mm) thick
  • the extent of the frost is similar on both wings
  • the frost is on or between the black lines defining the permissible CSFF area
  • the outside air temperature is above freezing(0 C, 32 F)
  • there is no precipitation or visible moisture at the wing surface (rain, drizzle, snow, fog)

Auxiliary Fuel System

The standard number of fuel tanks is three. Classics could be fitted with an auxiliary fourth tank which was controlled from the main panel as shown at the top of the page. The 737-200Adv could also be fitted with an auxiliary tank at the forward end of the aft hold; these were available in either 3,065 or 1,421 litre capacities.

BBJ Aux fuel panel located on Capt’s & F/O’s main panels

The BBJ can have up to 9 aux fuel tanks giving it a maximum fuel quantity of 37,712kgs (83,000lbs) although in practice this would probably take you over MTOW if any payload was carried. This fuel would give a theoretical range in excess of 6200nm. The aux tanks are located at the rear of the fwd hold and the front of the aft hold, this reduces the C of G movement as fuel is loaded and used.

Aux fuel tank in aft hold of a BBJ2 (-800 fuselage)

Refuelling of the aux tanks is done by moving the guarded switch in the refuelling panel to AUX TANKS. The controls for main tanks 1 and 2 change to aft aux (AA) and fwd aux (FA) respectively.

The aux fuel system is essentially automatic. It works by transferring fuel from the aux tanks into the centre tank where it is then fed to the engines in the normal way. Flight crew can select fwd or aft tanks but normal practice is to use both to maintain C of G balance. The fwd and aft tanks are switched off when the ALERT light illuminates on the main panel.

Aux fuel control panel (Overhead panel)

There are no pumps in the aux fuel system. Cabin differential pressure (and bleed air as a backup) is used to maintain a head of pressure in the aux tanks to push the aux fuel into the centre tank.

Aux fuel control panel (Aft overhead panel)

(All Aux fuel photos: Capt D Britchford)

Follow this link to see the «Quick Change» Aux fuel system offered by Long Range, expected 2015.

The 737-200 had provision for a ferry kit. This comprised a 2,000 US Gal (7,570 litre) bladder cell which attached to the seat tracks of the passenger cabin. The fuel was fed to the centre tank through a manual valve by cabin pressure.

To date, two 737’s, 737-400 HS-TDC of Thai Airways on 3 Mar 2001 and 737-300 EI-BZG operated by Philippine Airlines on 5 Nov 1990 have been destroyed on the ground due to explosions in the empty centre fuel tank. The common factor in both accidents was that the centre tank fuel pumps were running in high ambient temperatures with empty or almost empty centre fuel tanks.

Читайте также:  Вислоухие коты уход за ними питание

Even an empty tank has some unusable fuel which in hot conditions will evaporate and create an explosive mixture with the oxygen in the air. These incidents, and 15 more on other types since 1959, caused the FAA to issue SFAR88 in June 2001 which mandates improvements to the design and maintenance of fuel tanks to reduce the chances of such explosions in the future. These improvements include the redesign of fuel pumps, FQIS, any wiring in tanks, proximity to hot air-conditioning or pneumatic systems, etc.

737s delivered since May 2004 have had centre tank fuel pumps which automatically shut off when they detect a low output pressure and there have been many other improvements to wiring and FQIS. But the biggest improvement will be centre fuel tank inerting. This is universally considered to be the safest way forward, but is very expensive and possibly impractical. The NTSB recommended many years ago to the FAA that a fuel tank inerting system be made mandatory, but the FAA have repeatedly rejected it on cost grounds.

Boeing has developed a Nitrogen Generating System (NGS) which decreases the flammability exposure of the center wing tank to a level equivalent to or less than the main wing tanks. The NGS is an onboard inert gas system that uses an air separation module (ASM) to separate oxygen and nitrogen from the air. After the two components of the air are separated, the nitrogenenriched air (NEA) is supplied to the center wing tank and the oxygenenriched air (OEA) is vented overboard. NEA is produced in sufficient quantities, during most conditions, to decrease the oxygen content to a level where the air volume (ullage) will not support combustion. The FAA Technical Center has determined that an oxygen level of 12% is sufficient to prevent ignition, this is achievable with one module on the 737 but will require up to six on the 747.

The Honeywell NGS was certified by the FAA on 21 Feb 2006 after over 1000hrs flight testing on two 737-NGs. Aircraft have been NGS provisioned since l/n 1935 and it has been installed since l/n 2620 onwards. The NGS requires no flight or ground crew action for normal system operation and is not dispatch critical.

NGS Panel in the wheel-well

Photo: Lonnie Ganz

This from the FAA Systems Fire Group website:

A series of aircraft flight and ground tests were performed by the Federal Aviation Administration and the Boeing Company to evaluate the effectiveness of ground-based inerting (GBI) as a means of reducing the flammability of fuel tanks in the commercial transport fleet. Boeing made available a Boeing 737 for modification and testing. A nitrogen-enriched air (NEA) distribution manifold, designed, built, and installed by Boeing, allowed for deposit of the ground-based NEA into the center wing tank (CWT). The fuel tank was instrumented with gas sample tubing and thermocouples to allow for a measurement of fuel tank inerting and heating during the testing. The FAA developed an in-flight gas sampling system, integrated with eight oxygen analyzers, to continuously monitor the ullage oxygen concentration at eight different locations. Other data such as fuel load, air speed, altitude, and similar flight parameters were made available from the aircraft data bus. A series of ten tests were performed (five flight, five ground) under different ground and flight conditions to demonstrate the ability of GBI to reduce fuel tank flammability. It was demonstrated under the most hazardous condition-an empty center wing tank-that GBI would remain effective for a large portion of the flight, or until aircraft descent. However, it was also shown that the dual venting configuration of some Boeing airplanes would have to be modified to prevent loss of inerting at certain ground and flight cross flow conditions.


fuel tank

Универсальный англо-русский словарь . Академик.ру . 2011 .

Смотреть что такое «fuel tank» в других словарях:

Fuel tank — A fuel tank is safe container for flammable liquids and typically part of an engine system in which the fuel is stored and propelled (fuel pump) or released (pressurized gas) into an engine. Fuel tanks range in size and complexity from the small… … Wikipedia

fuel tank — The storage compartment, under the trunk in most cars, that holds the fuel for the vehicle. Also called the gas tank … Dictionary of automotive terms

fuel tank — noun A container of fuel, especially one inside a vehicle … Wiktionary

fuel tank — compartment for storing fuel … English contemporary dictionary

fuel tank vapor valve — A valve mounted in the top of the fuel tank. Vents excess vapor and pressure from the fuel tank into the evaporative emission control system … Dictionary of automotive terms

fuel tank sender — A level sensor in the gas tank which sends information about the amount of remaining fuel … Dictionary of automotive terms

Self-sealing fuel tank — In aviation, self sealing fuel tank is a fuel tank technology in wide use since World War II that prevents fuel tanks primarily on aircraft from leaking fuel and igniting after being damaged by enemy fire.Self sealing tanks have two layers of… … Wikipedia

Conformal fuel tank — An F 15E Strike Eagle fitted with conformal fuel tanks under the wing roots … Wikipedia

Conformal Fuel Tank — F 15 mit CFTs an den Flügelwurzeln bzw. seitlich des Lufteinlaufs … Deutsch Wikipedia

integral fuel tank — A fuel tank formed by sealing off a part of the aircraft structure to use it for the storage of fuel. The most common form of integral tanks are those in the wings, called wet wings. The problems with wet wings are their greater vulnerability to… … Aviation dictionary

Fuel pump — should not be confused with fuel dispenser, a device that dispenses fuel into an automobile. A high pressure fuel pump on a Yanmar 2GM20 marine diesel engine. A fuel pump is a frequently (but not always) essential component on a car or other… … Wikipedia


T-Rex FuelTank Classic блок питания для гитарных эффектов

T-Rex FuelTank Classic — блок питания для гитарных эффектов

Источник питания FuelTank Classic имеет три изолированных линии питания: 9В постоянного тока, 12В постоянного тока и 12В переменного тока. Каждая из линий поддерживает нагрузку до 500 мА. На 9В-линии расположено восемь разъёмов с общей землёй. На 12В-линиях имеется по одному разъёму. Таким образом вы можете подключить два энергоёмких устройства по 500 мА каждое и множество стандартных 9В-педалей.

Читайте также:  Питание для монитора от другого

Как правило, стандартные педали рассчитаны на 9 или 12В, однако некоторые экземпляры требуют 18В и больше. Если ваша педаль может работать от батарейки, много ей не нужно — 20-40мА будет вполне достаточно. Однако если педаль работает исключительно от внешнего питания, показатели потребления тока могут сильно разниться — от 100 до 1200 мА, или даже больше.

Если вы используете много педалей требующих напряжение 9В или 12В постоянного тока и с суммарным потреблением, не превышающим 500 мА, вы можете подключать их к одному разъему с помощью входящего в комплект соединительного кабеля. Педали, требующие более 12В или потребляющие более 500 мА с этим источником питания работать не будут.

Защита питания организована в виде медленного плавкого предохранителя 250В/250 мА на входе.

FuelTank Classic сделан в расчёте на активное использование, поэтому его корпус выполнен из прочного металлического сплава, который обладает специальным внутренним защитным контуром, предотвращающим внешний и никому не нужный фон. Собираются все блоки питания в Дании, на качественных трансформаторах и полностью соответствуют современным требованиям к источникам питания.


  • Основное питание: 115В/230В (переключаемое)
  • 3 изолированных линии питания по 500 мА на линию
  • 8 разъёмов 9В постоянного тока, с общим заземлением
  • 1 разъём 12В постоянного тока
  • 1 разъём 12В переменного тока
  • Синий LED индикатор
  • Медленный плавкий предохранитель 250В/250мA
  • Кабель питания и 12 соединительных кабелей в комплекте
  • Размеры (Ш х Г х В): 160 х 78 х 38 мм
  • Вес: 800 г

Больше не надо менять батарейки. Больше не надо распутывать многочисленные кабели. FuelTank Classic — идеальный источник энергии для рациональных гитаристов, которые хотят сконцентрироваться на своем выступлении, а не на оборудовании. 1500 мА на 10 выходов — что еще может быть нужно? Три изолированных линии питания, три вида выходного напряжения, отдельная земля для выходов на 12В переменного и постоянного тока.

FuelTank Classic может питать все Ваши педали — позволяя Вам играть на полную мощность каждую ночь на радость соседям. Компактный корпус с легкостью поместится на любом педалборде, включая T-Rex ToneTrunk. И он поставляется со всеми необходимыми кабелями. 12 различных кабелей — соберите свой педалборд без проблем! Купите FuelTank Classic прямо сейчас!


Musik Produktiv Россия — интернет магазин — приобретайте музыкальные инструменты в интернете

Музыкальные инструменты для всех! Более 30.000 наименований в интернет-магазине Музик Продуктив!

Добро пожаловать в наш музыкальный магазин! У Вас только недавно появилось желание заняться музыкой? Или же Вы уже давно являетесь профессионалом музыкального бизнеса? На сайте нашей компании Музик Продуктив в интернете, а также в музыкальном мегамаркете, находящемся в городе Иббенбюрен на севере Германии, Вы всегда сможете найти всё, что Вам необходимо! Мы представляем Вашему вниманию более чем 1000 брендов известных мировых производителей музыкальных инструментов и 30000 самых разнообразных продуктов. У нас Вы сможете открыть для себя просто невероятный выбор гитар, ударных установок, перкуссионных инструментов, синтезаторов, микрофонов, звукового и светового оборудования сцены, а также оборудования для профессиональной студийной звукозаписи. Уже более 40-ти лет наш музыкальный магазин занимается рассылкой музыкальных инструментов, аксессуаров и специальной техники в более чем 50 стран мира. Наш богатый опыт работы позволит Вам быстро и без проблем произвести оформление заказа и его оплату, а мы, в свою очередь, позаботимся о квалифицированной безопасной доставке и, разумеется, гарантийном обслуживании. Воспользуйтесь нашим опытом работы и Вы сразу сможете убедиться, что наши клиенты для нас всегда будут стоять только на первом месте!

Музик Продуктив это не просто интернет-магазин, многие из которых, как это часто случается, появляются и снова быстро исчезают на рынке. Мы действительно являемся одним из самых больших и надёжных музыкальных мегамаркетов в Европе. Общая площадь компании составляет 7.000 м² со складом, вмещающим товары на сумму свыше 6 млн. Евро. В течение многих лет нашей фирме не просто удалось стать одним из ведущих поставщиков музыкальных инструментов и профессионального музыкального оборудования через интернет в Европе и за её пределами, но и заслужить доверие множества наших постоянных покупателей.

Приобретайте музыкальные инструменты в Музик Продуктив без риска!

© 2020 MP Musikhandel GmbH & Co. KG

О нас · Сервис · Стоимость пересылки · Виды оплаты · Права и законодательство · Юридическая информация · Защита информации

Все цены без НДС, стоимости пересылки и таможенных пошлин.


747. Как работает топливная система?

Представим идеальную ситуацию, когда у нас полные баки.

Перед запуском двигателей все насосы баков, где есть топливо, должны быть включены. ВСЕ изолирующие клапаны открыты.

После запуска двигателей автоматика открывает изолирующие клапаны 2 и 3 (1), а насосы OVRD 2 и 3 (6) при этом отключает. Таким образом, самое высокое давление

поддерживается насосами центрального бака (3), которые являются OVERRIDE насосами и, соответственно, только они питают все четыре двигателя.

Перед взлетом, когда закрылки находятся во взлетном положении, изолирующие клапаны 2 и 3 (1) закрываются (автоматически, конечно). И, значит, двигатели 1 и 4 будут питаться от центрального бака (3), а двигатели 2 и 3 – от баков 2 и 3 (5).

После взлета, когда закрылки прибраны, открываются изолирующие клапаны 2 и 3 (1), и все двигатели начинают питаться топливом из центрального бака (3).

Когда в центральном баке останется 36 470 килограмм топлива, автоматически включатся TRANSFER/JETTISON насосы (7) и начнут перекачивать топливо из баков, установленных в стабилизаторе. Это топливо будет полностью перекачано в центральный бак.

Когда на выходе одного из насосов центрального бака (3) будет отмечено низкое давление, автоматика включит OVERRIDE/JETTISON насосы 2 и 3 (6), которые будут питать топливом все четыре двигателя из баков 2 и 3. Остатки топлива из центрального бака будут перекачаны в бак MAIN 2.

Когда в баках MAIN 2 и MAIN 3 останется по 18 100 кг топлива, автоматика откроет вентили и перельет топливо из резервных баков R2 и R3 в баки 2 и 3, соответственно. Магистраль от резервных баков к бакам 2 и 3 проложена сквозь баки MAIN 1 и MAIN 4 соответственно.

Когда в баках MAIN 2 и MAIN 3 останется по 13 300 кг, на EICAS появится сообщение «FUEL TANK /ENG». Вам нужно будет вручную отключить насосы OVRD 2 и 3 (6) и закрыть изолирующие клапаны 1 и 4 (2). Тем самым двигатель 1 будет запитан топливом из бака 1, двигатель 2 – топливом из бака 2 и так далее.

Еще раз повторю эту инструкцию:

Если на EICAS появилось сообщение «FUEL TANK /ENG», вам нужно вручную отключить насосы OVRD 2 и 3 и закрыть изолирующие клапаны 1 и 4 с надписью FUEL X FEED.

Изолирующие клапаны между основными баками

На оверхэде есть такая кнопка. Ее нормальное положение – OFF. В положении ON открываются клапаны между MAIN 1 и MAIN 2 и между MAIN 4 и MAIN 3 баками, и топливо начинает переливаться из первого во второй и из четвертого в третий бак под действием силы тяжести.