Меню

Цифровые сигналы по сети питания

Прикладная электроника — передача сигналов управления по шине питания

В данной статье будут рассмотрены методы передачи данных по проводам питания устройств. Особое внимание уделено проблемам, которые необходимо решить разработчику подобных устройств связи. Приведены примеры реализации приемной и передающей части для линий связи по силовым проводам постоянного тока, а также реализация канала связи по силовым проводам переменного тока 220 Вольт с частотой 50 Герц. Описаны типовые алгоритмы работы управляющего микроконтроллера.

Немного истории

Идея передачи сигналов управления по проводам питания не нова. Еще в 30-х годах прошлого столетия проводились смелые эксперименты по передаче таких сигналов по проводам силовой сети города. Полученные результаты были не очень впечатляющими, но не стоит забывать о том, что в те времена царствовала ламповая техника и элементная база была не столь разнообразна. Ко всем проблемам технического толка добавлялись и организационные: не было единого стандарта — каждый разработчик делал всё под себя: использовались разные частоты и модуляции. Всё это сдерживало развитие данной отрасли связи.

Принцип работы передающих и приемных устройств

Принцип работы таких устройств заключается в передаче высокочастотных сигналов по проводам питания постоянного или переменного тока. В силовых линях переменного тока чаще всего передача сигналов осуществляется в момент перехода переменного тока через ноль, т.е., когда силовое напряжение отсутствует или минимально. Дело в том, что и уровень помех в этот момент минимально. При этом полезный нам сигнал передается как бы между серией помех.

Передача высокочастотного сигнала по сети переменного тока

Для переноса высокочастотного сигнала в силовую сеть чаще всего используется трансформатор. Приемная часть обычно состоит из трансформатора связи и контура, на котором выделяются необходимые высокочастотные сигналы.

Метод переноса высокочастотных сигналов в сеть переменного тока

В силовых цепях постоянного тока используют подобный метод передачи высокочастотных сигналов, но принцип формирования такого сигнала иной: мощный ключ (транзистор) своим переходом кратковременно шунтирует сеть. Происходит небольшое уменьшение напряжение в сети (Рис. 3).

Метод формирования высокочастотных сигналов в сетях постоянного тока

На приемной стороне установлен чувствительный детектор, на котором выделяются эти просадки напряжение в линии. Далее эти сигналы поступают на вход усилителя с функцией АРУ, после чего полученные сигналы передаются в блок логики, который может быть выполнен как на микросхемах малой интеграции, так и на универсальном микроконтроллере или специализированной микросхеме, имеющей в своём составе все вышеперечисленные узлы. В последнее время микроконтроллеры всё чаще используются для таких задач благодаря низкой цене и большим возможностям. Тем более, использование программируемых устройств позволяет изменять назначение таких устройств, загрузив в них новую программу — это значительно проще и дешевле, чем изготовить новое электронное устройство с десятком микросхем…

Блок-схема современного PLC-модема

Достоинства и недостатки данного типа связи

Достоинством данного типа связи является совместное использование уже имеющейся проводной линии силовой сети. Т.е., не требуется производить монтаж линии связи, да и розетка есть практически в любой комнате.

К минусам относится как техническая сложность устройства, так и невысокая скорость при передаче данных на расстояния больше, чем 100-300 метров.

Также не стоит забывать, что данный канал связи можно организовать только между теми устройствами, которые подключены к одной фазе сети и только в пределах одной трансформаторной подстанции — высокочастотные сигналы не могут пройти через обмотки трансформатора электрической подстанции.

В принципе, последнее ограничение частично снимается использованием пассивных или активных ретрансляторов высокочастотных сигналов. Их используют как для передачи сигналов на другую фазу, так и для передачи сигналов в линию другого трансформатора.

Технические сложности реализации канала связи

Организация надежного канала связи по силовой сети — задача нетривиальная. Дело в том, что параметры сети непостоянны, они меняются в зависимости от времени суток: изменяется количество подключенных к сети устройств, их тип и мощность. Еще одной из негативных особенностей электрических сетей стран бывшего СССР является «гегемония» — мощные трансформаторные подстанции, которые питают целые кварталы! Соответственно, на одну фазу трансформатора подключены сотни абонентов, в квартире каждого из них имеется большое количество всевозможных устройств. Это как устройства с трансформаторными блоками питания, так и устройства с импульсными блоками питания. Последние зачастую выполнены с нарушениями в плане электромагнитных излучений — помех, что создает весьма высокий уровень помех в силовой сети здания и города в частности.

Во многих странах для питания зданий используются компактные трансформаторные устройства. Один такой трансформатор питает от 3 до 7 квартир или домов. Следовательно, качество электроэнергии, поступающей к абонентам, значительно выше, чем в наших электрических сетях. Также и сопротивление между фазным проводом и нулем выше. Все эти факторы позволяют иметь лучшие условия для передачи данных по квартире или зданию, чем имеем мы в наших условиях.

Большое количество подключенных в сеть устройств приводит к низкому сопротивлению между фазным проводом и нулем, оно может составлять 1-3 ома, а иногда и еще меньше. Согласитесь, что «раскачать» такую низкоомную нагрузку весьма сложно. Ко всему, не забывайте, что сети весьма значительны по площади, следовательно, имеют большую емкость и индуктивность. Все эти факторы определяют сам принцип построения такого канала связи: мощный выход передатчика и высокая чувствительность приемника. Поэтому используются сигналы высокой частоты: сеть имеет большее сопротивление для высоких частот.

Не меньшей проблемой является плохое состояние силовых сетей, как в целом, так и внутри строений. Последние часто выполнены с нарушениями, так же нарушается даже минимальное требование: магистраль выполняется более толстым проводом, чем отходящие питающие линии в комнаты. Электрикам известен такой параметр, как «сопротивление петли фаза-ноль». Его смысл сводится к простой зависимости: чем ближе к электрической подстанции, тем толще должны быть провода, т.е., сечение проводников должно быть больше.

Если сечение проводов выбрано неверно, прокладка магистральной линии выполнена «как получилось», то сопротивление линии гасит высокочастотные сигналы. Исправить ситуацию можно или улучшив чувствительность приемника, или увеличив мощность передатчика. И первое, и второе проблематично. Во-первых, в линии связи присутствуют помехи, поэтому увеличение чувствительности приемника до уровня помех не даст увеличения достоверности приема сигналов. Увеличение мощности передатчика может создавать помехи другим устройствам, поэтому также это не является панацеей.

Читайте также:  Жители алтайского края питание

Распространенные стандарты. Стандарт Х10

Наиболее известным из стандартов передачи команд по силовой сети является Х10. Данный стандарт был разработан очень давно, в 1975 году шотландской компанией «Pico Electronics». Данные передаются с помощью пачки импульсов частотой 120 кГц и длительностью 1мс. Они синхронизированы с моментом перехода переменного тока через нулевое значение. За один переход через нуль передаётся один бит информации. Приёмник ожидает такой сигнал в течение 200 мкс. Наличие импульса вспышки в окне означает логическую «единицу», отсутствие — логический «ноль». Биты передаются дважды: первый раз в прямом виде, второй раз инвертировано. Обычно модули выполняются как отдельные устройства, но сейчас всё чаще выполняются не на основе разных компонентов, а с использованием микроконтроллера. Это уменьшает размер приемника, что позволяет встроить «умную начинку» даже в патрон электрической лампы или дверной звонок.

Как говорилось ранее, высокочастотный сигнал не может распространяться дальше трансформаторной подстанции и фазы. Поэтому для получения связи на другой фазе используют так называемые активные ретрансляторы. Но необходимо учитывать, что приемник слушает сигнал только в определенные моменты времени. Поэтому используют или «умные» приемники, с измененными параметрами

У данного стандарта связи есть как плюсы, так и минусы. Во-первых, он разработал очень давно, тогда не было микроконтроллеров, и вся схемотехника была аналоговой, с использованием многочисленных компонентов. Поэтому и протокол связи очень низкоскоростной: за один период сети передается не более одного бита. Дело в том, что бит передается дважды: в первом полупериоде он передается в прямом виде, а во втором полупериоде — инверсно. Во-вторых, некоторые команды передаются группами. Это еще больше увеличивает время обмена данными.

Также значительным недостатком этого протокола является отсутствие подтверждения приема команды устройством. Т.е., послав команду, мы не можем быть уверены в гарантированной его доставке получателю. Это также не способствует распространению данного стандарта.

Собственный опыт. Изобретаем велосипед

Опробовав в реальных условиях многочисленные готовые устройства, позволяющие передать команды по силовой сети, я пришел к неутешительному выводу: в домашних условиях, с ограниченным бюджетом, не имея специализированных приборов и (чего скрывать-то?) знаний, изобрести что-то гениальное не получится. Но ничто и ничто не мешает сделать приятную поделку для себя, под свои конкретные условия. Под этим подразумевается и область применения такого изделия, расстояния, на которые необходимо передавать команды, а также функциональность такого устройства.

Выполним некоторые формальности в виде некого подобия технического задания для нашего проекта:

  • устройство должно передавать данные по проводам силовой сети;
  • данные должны передаваться в «паузах» тока, т.е., когда напряжение в сети минимально;
  • надежность канала связи обеспечивается как аппаратно (оптимальным уровнем сигнала в точке приема), так и программно (данные передаются с контрольной суммой для обнаружения повреждения принятых данных, команды передаются несколько раз, факт получения команды приемным устройством подтверждается посылкой соответствующего сигнала обратно к главному устройству);
  • упростим до необходимого уровня как протоколы обмена данными между устройствами в сети, так и тип модуляции. Будем считать, что один бит данных передается 1 миллисекунду. Единица будет передаваться в виде пачки импульсов этой длительности, а ноль — её отсутствием;
  • в сети все устройства слушают сигналы, но выполняет полученную команду только то устройство, которому адресована такая команда. Т.е., у каждого из устройств есть свой индивидуальный адрес — номер.

Сама схемотехника исполнительной части таких устройств может быть разной. Нас интересует схема приемной и передающей части.

На рисунке показана схема реального устройства, передающего команды по силовой сети. Исполнительная часть устройства управляет яркостью свечения лампы, т.е., является диммером.

Рассмотрим схему подробнее. Трансформатор Т1 и диодный мост D1-D4 обеспечивают питание устройства. Узел R8\R11, диоде D6 и транзистор Q1 обеспечивают форматирование сигнала, указывающего на минимальное напряжение в силовой сети (частота 100 гц). Кнопки S1-S3 используются для местного управления работой диммера: изменяют яркость свечения лампы, позволяют сохранить по умолчанию этот параметр, а также время нарастания и угасания лампы. Светодиод LED отображает режимы работы диммера и факт прима сигналов. Остальные светодиоды отображают яркость свечения лампы и время изменения яркости.

Резисторы R11 и R12 образуют делитель напряжения и используются для задания «чувствительности» приёмной части устройства. Изменяя соотношения сопротивления этих резисторов можно влиять на реакцию устройства как на помехи, так и на полезный сигнал.

Трансформатор связи Т2 используется для гальванической развязки приёмной и передающей частей устройства, а также передаёт высокочастотные сигналы в силовую сеть здания.

Передающая часть выполнена на транзисторе Q2 и одной из обмоток трансформатора Т2. Обратите внимание на стабилитрон D5 — именно он защищает переход транзистора от пробоя при кратковременных высоковольтных помехах в сети.

Приёмная часть несколько сложнее: одна из обмоток трансформатора Т2 вместе с параллельным колебательным контуром L1\C2 образуют сложную схему приёмного тракта. Диоды D8 и D9 защищают от предельного значения напряжения вход микроконтроллера. Благодаря этим диодам напряжение не может превысить значение питающего напряжения (в нашем случае 5 Вольт) и не может стать отрицательным ниже минус 0.3-0.5 Вольт.

Процесс приёма сигналов производиться следующим образом. Опрос кнопок и работа с индикацией каких-либо особенностей не имеют. Поэтому их работу описывать не стану.

Подпрограмма приёма ожидает сигнала перехода тока через ноль. По наступлению этого события запускается процедура опроса аналогового компаратора, которая длится около 250 микросекунд. Если никаких сигналов получено не было, то подпрограмма начинает свою работу с самого начала.

Читайте также:  Режим питания при удалении матки

При получении любого сигнала (компаратор выдал на своём выходе логическую единицу) запускается процедура анализа полученного сигнала: в течение определенного времени производится опрос компаратора на наличие длинного сигнала. Если принятый сигнал имеет необходимую длительность, то принятый сигнал признается достоверным. После этого запускается процедура приёма необходимого количества бит данных, переданных удаленным устройством.

Получив все данные, производится их анализ на факт совпадения с принятой в этой же посылке контрольной суммой. Если данные приняты достоверно, то команда признаётся достоверной и выполняется. В ином случае принятые данные игнорируются, и программа выполняется заново.

Процесс передачи сигналов в сеть также полностью выполняется микроконтроллером. При необходимости передачи данных подпрограмма ожидает стартовое условие: получение сигнала перехода тока через ноль. Получив этот сигнал, выдерживается пауза в 80-100 микросекунд, после чего в силовую сеть передается пачка импульсов необходимой частоты и длительности. Высокочастотные сигналы практически без потерь проходят через небольшую ёмкость высоковольтного конденсатора С1 в сеть. Пачки необходимой частоты формируются с использованием аппаратного ШИМ-генератора, имеющегося в данном микроконтроллере. Как показали эксперименты, наиболее оптимальной частота передачи сигналов лежит в пределах 90-120 Кгц. Эти частоты разрешены к использованию без необходимости регистрации в соответствующих органах надзора как в России, так и Европе. (Стандарт CENELEC)

А теперь ответ на самый часто получаемый вопрос: какова дальность связи между такими устройствами? Ответ прост: на дальность связи влияет множество факторов: качество силовых линий, наличие «скруток» и монтажных коробок, тип нагрузки и её мощность …

Из практики: в небольшом городе, на силовой линии, питающей 30-50 частных домов, утром и днём (когда электрическими приборами пользуются меньше) дальность связи значительно выше, чем в крупном городе с сотней квартир на одной фазе.

Отвечу и на второй распространенный вопрос: как увеличить дальность связи? Для этого можно увеличить мощность передаваемого в силовую сеть сигнала, а также улучшить приёмную часть устройства.

Усилитель мощности можно выполнить на распространенной микросхеме TDA2030 или TDA2003 (хотя заявленные производителем параметры иные, но они неплохо работают).

Приёмная часть более сложна к доработке:

  • добавить входной усилитель и АРУ;
  • добавить узкополосные фильтры на входе устройства. Самое простое решение таково: последовательный контур, настроенный на необходимую частоту.

Источник



Передача данных по сети 220 В: аналоговый front-end

16 октября 2009

Использование сети 220 В в качестве средства для передачи данных между двумя или несколькими устройствами давно будоражит умы разработчиков. Каких то 10-15 лет назад идея организации связи по бытовой электросети казалась шуткой и вызывала улыбку. В наши дни передача данных по высоковольтной сети не вызывает удивления и имеет вполне хорошие шансы на коммерческий успех. Самое очевидное преимущество использования высоковольтных коммуникаций для передачи данных – отсутствие необходимости прокладывать кабель и осуществлять монтажные работы. Для отечественных разработчиков наиболее перспективными областями применения данного вида связи являются системы удаленного сбора данных со счетчиков, охранные системы, системы типа «умный дом».

К сожалению, даже низкоскоростная передача данных по бытовой сети переменного тока пока не получила в нашей стране широкого распространения. Этому есть ряд причин – как низкое качество отечественных силовых коммуникаций, так и не слишком большая осведомленность рынка о модемах для этого типа передачи данных.

Заинтересовавшись темой разработки PLC-модемов, автор статьи потратил не одну неделю на поиск необходимой информации. При выборе решения, на основе которого можно было бы реализовать такой модем, особых сложностей не возникло. Практически сразу же были выбраны предложения от трех известных производителей микросхем – ON Semiconductor, STMicroelectronics и Texas Instruments.

При более глубоком изучении предлагаемой технической документации наибольшее число вопросов вызвала организация аналоговой части PLC-модема, тогда как по цифровой части в документации была вполне исчерпывающая информация. Какие параметры должны быть у изолирующего трансформатора? Какие требования предъявляются к элементной базе, и какими должны быть характеристики фильтров? Предлагаемая статья открывает цикл публикаций на тему практической реализации PLC-модемов и посвящена построению их аналоговой части.

Типовая структурная схема PLC-модема (рисунок 1) состоит из четырех основных частей.

Рис. 1. Структурная схема PLC-модема

Входная часть обеспечивает изоляцию, фильтрацию и усиление передаваемых и принимаемых аналоговых сигналов. Сердцем PLC-модема является микросхема модема, трансивера или DSP, которая организует протокол передачи данных, а также отвечает за физическую реализацию передачи (формирование несущей частоты, модуляция, демодуляция, фильтрация и т.д.). Для управления ИМС модема, как правило, необходим внешний контроллер, а для питания всей схемы используется источник питания, работающий от той же сети переменного тока, которая используется и для передачи данных.

ON Semiconductor AMIS-30585

Компания ON Semiconductor предлагает для организации передачи данных по силовым сетям специализированную микросхему модема AMIS-30585. Для передачи данных в AMIS-30585 используется S-FSK модуляция (разнос частот по умолчанию – 10 кГц), а несущая частота программируется в диапазоне 9…95 кГц. Максимальная скорость передачи 1200 бит/c. Особенностью данной микросхемы является наличие встроенного микроконтроллера с ядром ARM7-TDMI, что обеспечивает внутрисхемную реализацию MAC-уровня. Эта особенность является основным преимуществом перед решениями других производителей. Помимо данного модема, ONS предлегает pin-to-pin-совместимый модем AMIS-49587 со скоростью передачи данных до 2400 бит/с.

Входная часть модема на основе решений от ONS (рисунок 2) включает в себя: изолирующий трансформатор с разделительным конденсатором (по сути – пассивный ФВЧ), драйвер (усилитель мощности), приемный канал, изолятор на оптроне для получения синхронизирующего сигнала частотой 50 Гц и дополнительный канал для получения сигнала управления мощностью передатчика (обратная связь с передатчиком).

Рис. 2. Принципиальная схема входной части модема на основе AMIS-30585

Данная схема для модема на основе AMIS-30585 достаточно проста и не требует экзотической элементной базы, поэтому может быть модифицирована или использована в готовом виде в сочетании с любой другой ИМС модема. Это утверждение в целом справедливо и для всех иных схем, представленных в статье.

Читайте также:  Инвертор питания 220 110

Передача данных от счетчиков посредством PLC-модемов наиболее распространена во Франции. По этой причине производством изолирующих трансформаторов для таких модемов занимаются нишевые французские и немецкие компании, а сами трансформаторы не слишком доступны. Из наиболее доступных рыночных вариантов были выбраны трансформаторы фирмы Vigortronix – VTX-111-010 и VTX-111-004 (в данный момент эти изделия имеются на складе компании КОМПЭЛ).

Драйвер линии реализован на операционном усилителе OPA561 c высоким значением выходного тока (до ±1,2 A). Это связано с тем, что драйверу приходится работать на нагрузку порядка 5 Ом. Выходной ток OPA561 в этой схеме ограничен 0,6 А с помощью резистора 10 кОм между четвертым выводом и минусом питания. Помимо функции раскачки линии, OPA561 также выполняет функцию ФНЧ. Смоделированная АЧХ такого фильтра изображена на рисунке 3.

Рис. 3. АЧХ передающей части

Поскольку выход ОУ отключается наличием на выводе E/S отрицательного напряжения питания, а выходная логика AMIS-30585 имеет уровни 0 и +3,3 В, для управления отключением выхода усилителя добавлена схема на транзисторах BC857 и BC847. Следует иметь в виду, что корпус данного ОУ имеет «Power Pad» для отвода тепла, который следует электрически соединить с минусом питания.

Приемник и канал управления мощностью передатчика схемотехнически повторяют друг друга и реализованы на сдвоенном ОУ NE5532. По сути это – ФВЧ, основная задача которого – подавить сигнал частотой 50 Гц. Такой фильтр позволяет получить ослабление до -90 дБ на частоте 50 Гц. Выход приемного канала соединяется с входом интегрированного в AMIS-30585 операционного усилителя, на котором также реализуется ФВЧ с ослаблением порядка -80 дБ, что в сумме дает ослабление до -170 дБ на частоте 50 Гц. АЧХ фильтра на NE5532 приведена на рисунке 4. Разумеется, с учетом пассивной фильтрации и входная, и выходная части являются более узкополосными.

Рис. 4. АЧХ приемной части

Для пакетной передачи данных AMIS-30585 требуется синхронизирующий сигнал, который несет в себе информацию о пересечении нуля сетевым напряжением частотой 50 Гц. Для этой цели добавлена схема на оптроне PC817С. Выходной сигнал этой схемы – импульсы частотой 50 Гц, амплитудой от 0 до напряжения VDD. Передний и задний фронты этих импульсов соответствуют пересечениям нуля сетевого напряжения.

На рисунке 5 изображена упрощенная схема включения AMIS-30585. Собственно, это минимум того, что необходимо для работы данной микросхемы. В зависимости от приложения, в котором используется PLC-модем, разработчику предстоит выбрать управляющий микроконтроллер. Более подробную информацию можно найти в технической документации на AMIS-30585.

Рис. 5. Упрощенная схема включения AMIS-30585

STMicroelectronics: ST7540

ST7540 – решение для PLC модема от STMicroelectronics. Отличительной особенностью этой микросхемы является наличие интегрированного усилителя мощности и двух линейных стабилизаторов напряжения на 5 и 3,3 В. На этом решении могут остановиться и разработчики, которые уже имеют свой собственный протокол передачи данных по последовательному интерфейсу, например, при переходе от передачи данных по RS-485 к передаче тех же данных посредством PLC. Входная часть модема на ST7540 показана на рисунке 6.

Рис. 6. Принципиальная схема входной части модема на основе ST7540

АЧХ активной части передатчика в целом похожа на АЧХ усилителя мощности для AMIS-30585 (полоса пропускания около 100 кГц, усиление в полосе 9 дБ) поэтому этот график не приводится. В документации на отладочный набор STMicroelectronics приводит более интересные характеристики (рисунок 7), а именно АЧХ приемной и передающей частей с учетом пассивной части (выделена красным на рисунке 6).

Рис. 7. АЧХ передающей и приемной частей

При реализации входной части PLC-модема возможно использование неизолированного решения (рисунок 8). В этом случае при сопряжении микросхемы модема с внешним устройством (микроконтроллер, микросхема интерфейса) следует применять цифровой изолятор интерфейсов, например, изолятор с емкостным барьером серии ISO7x от Texas Instruments.

Рис. 8. Неизолированная входная часть

Texas Instruments: C2000

Компания Texas Instruments в качестве коммуникационной микросхемы предлагает использовать цифровой сигнальный процессор (DSP) серии C2000 (рисунок 9). Преимуществом данного решения является то, что выбор типа модуляции, обеспечение протокола передачи и кодирования данных полностью предоставлено разработчику. Казалось бы, усложнение разработки не является преимуществом перед конкурентами, однако в этом случае у разработчика появляется возможность разработать свой собственный способ помехозащищенной передачи данных, что крайне важно в условиях реалий отечественных бытовых сетей. В итоге, решение на основе DSP может оказаться единственным жизнеспособным в нашей стране. Что каcается финансовой стороны вопроса, то самый простой DSP серии Piccolo от Texas Instruments (которого вполне достаточно для выполнения описанных задач) стоит дешевле микросхемы PLC-модема.

Рис. 9. Структурная схема сопряжения DSP и аналоговой части

Собственно при разработке аналоговой части для этого решения можно опираться на описанные выше схемы. Однако, следует учитывать один важный момент – это предлагаемый способ формирования несущих частот с использованием TMS320F280x, который графически продемонстрирован на рисунке 10.

Рис. 10. Формирование несущей частоты в модеме на DSP от Texas Instruments

Очевидно, что от аналоговой передающей части в данном случае требуется просуммировать сигналы с выходов ШИМ и затем отфильтровать высшие гармоники спектра суммарного сигнала, чтобы получить необходимый гармонический сигнал.

Заключение

Несколько слов об отладочных средствах для описанных выше решений. ON Semiconductor предлагает отладочный набор AMIS49587EVK для микросхемы модема AMIS-49587, которая pin-to-pin-совместима с AMIS-30585. Для отладки решения на основе ST7540 потребуются 2 платы: непосредственно плата с трансивером (EVALST7540-1) и коммуникационная плата (EVALCOMM) с микроконтроллером ST7 (ST72F651AR6), обеспечивающая связь с ПК через порты USB и RS-232.

Texas Instruments предлагает отладочный набор TMDSPLCKIT-V1. Отладочная плата состоит из источника питания, аналогового front-end’а и платы с установленным DSP. Все отладочные наборы содержат необходимое программное обеспечение для управления целевыми платами. Более подробная информация дается на официальных сайтах производителей.

Источник