Меню

Егэ по теме питание



Типы питания

Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу biorepet-ufa.ru .

В этой статье рубрики «Из диалогов в комментариях» собраны вопросы читателей и мои ответы на них по типам питания. Хотя все организмы по типу питания относят к автотрофным или гетеротрофным, но не для всех форм жизни всё выглядит так «прозрачно». А вопросов в заданиях ЕГЭ или ОГЭ по типам питания бывает не мало.

Самой хорошей базой для подготовки к сдаче экзаменов по биологии, кроме изучения учебников, является Открытый банк заданий ФИПИ, включающий тесты КИМов за все прошлые годы сдачи ЕГЭ и ОГЭ (ГИА) в нашей стране.

1. Ольга: Встретила такой вопрос на соотнесение. Азотфиксирующие клубеньковые бактерии являются автотрофами или гетеротрофами? Хемосинтез есть — обычно относим к авто-. Но от растений они берут органику в симбиозе, то есть по типу добывания углерода потребители получается. Если бы разговор был о свободноживущих ризобиях, даже не сомневалась бы в автотрофности. А тут подрастерялась.

Б.Ф.: Правильно, Ольга, что «подрастерявшись» написали мне этот комментарий. Думаю, что ваш вопрос может быть непонятен многим.
Ни при каких условиях азотфиксирующие бактерии (бактерии, имеющие фермент нитрогеназу, за счет которого они и способны «разрушить» мощнейшую тройную ковалентную связь в молекуле N2), находясь в ризосфере растений или уже внедрившись в корни бобовых и образовав клубеньки — не способны к автотрофии. Видимо Вы спутали азотфиксаторов с нитрификаторами. Нитрификаторы — действительно хемотрофы: берут энергию для связывания СО2 за счет окисления нитратного азота в нитритный.
Азотфиксация же, усвоение молекулярного азота воздуха — это глобальнейший их процессов на Земле, сравнимый по значимости лишь с фотосинтезом, требует для своего осуществления огромного количества энергии в связанной форме. Лучшим источником энергии для азотфиксаторов, как яркого примера гетеротрофного питания, являются углеводы. Поэтому бактерии-азотфиксаторы могут хорошо «работать» только вблизи растений (в их ризосфере, где выделяется растениями много углеводов) или внутри растений (в клубеньках).

Ольга: Понятно, не хватило времени и усилий подтянуть теорию по вопросу. Спасибо, предельно понятно. Надеюсь, с ЕГЭ не разойдемся. Но еще почитаю…

2 . Анна: У меня такой вопрос. Если всем растениям необходимы азотные удобрения, то они все могут фиксировать азот? Думала, что это привилегия только бобовых с их клубеньковыми бактериями.

Б.Ф.: Никакие растения, ни бобовые, ни растения других семейств не способны фиксировать азот (имеется в виду использовать для питания атмосферный азот N2). Все растения питаются уже связанными формами азота: нитратным азотом или аммонийным азотом. Из воздуха способны усваивать азот только некоторые (их очень мало видов) азотфиксирующие бактерии. Таковыми являются симбиотические клубеньковые бактерии, селящиеся в корнях бобовых растений, и различные свободноживущие бактерии-азотфиксаторы, заселяющие зону вблизи корней любых растений (ризосферные бактерии).
Симбиотическая фиксация N2 более эффективный процесс, чем фиксация N2 ризосферными бактериями, поэтому бобовые растения меньше требуют для жизни затрат почвенного минерального азота, чем не бобовые. При выращивании бобовых в агроценозах, они, соответственно, будут требовать меньших доз азотных минеральных удобрений, чем, например, злаковые растения.

3. Светлана: Помогите мне разобраться с бактериями. Какие куда следует отнести. Меня интересуют клубеньковые, азотобактер, нитрифицирующие. Мои мысли: нитрифицирующие однозначно хемосинтетики, клубеньковые симбионты скорее автотрофы (аминоавтотрофы), азотобактер свободноживущие (аминоавтотрофы) значит клубеньковые и азотобактер автотрофы.

Б.Ф.: Да, Вы правы, что нитрифицирующие бактерии — это автотрофные бактерии (хемосинтетики).
Но клубеньковые бактерии и азотобактер — это ГЕТЕРОТРОФНЫЕ организмы, способные к фиксации атмосферного азота N2. Азотфиксация — очень энергоемкий процесс, требующий больших количеств легкодоступных органических веществ — углеводов в качестве источника энергии. Эти углеводы клубеньковые бактерии получают в необходимом количестве за счет фотосинтеза растений, находясь непосредственно внутри клубеньков корней бобовых растений. Свободноживущему азотобактеру тоже необходимо огромное количество углеводов, поэтому он будет активно размножаться и фиксировать азот атмосферы только вблизи корней растений (в их ризосферной зоне), куда поступают продукты фотосинтеза.
Лишь с точки зрения питания азотом азотфиксаторы — аминоавтотрофы. А с точки зрения деления всех организмов на автотрофов (способных самим создать органические вещества из неорганических) и гетеротрофов (нуждающихся в готовых органических веществах как источнике углерода и энергии), нитрификаторы — автотрофные (хемотрофные) организмы, а клубеньковые бактерии и любые другие азотфиксирующие (фиксирующие молекулярный азот воздуха N2) бактерии — гетеротрофные организмы.

Читайте также:  Список полезных продуктов для здорового питания

4. Елена: Борис Фагимович, помогите разобраться с вопросом. Каково биологическое значение хемосинтеза?
а) разрушение горных пород
б) снижение концентрации СО2 в атмосфере
в) очищение сточных вод
г) образование полезных ископаемых.
Даже не знаю, что и выбирать… с одной стороны, железо- и серобактерии накапливают в своих клетках в процессе хемосинтеза соединения железа и серы, способствуя «образованию полезных ископаемых». С другой стороны, серобактерии, разлагающие сероводород, применяют для очистки сточных вод. И вот еще нашла такую информацию: «Серобактерии способствуют постепенному разрушению и выветриванию горных пород вследствие образования ими серной кислоты, являются причиной порчи каменных и металлических сооружений, выщелачивания руд и серных месторождений». А ответ то нужен один…. Склоняюсь больше к ответу — г)

Б.Ф.: Вы правы в том, что в принципе все ответы являются правильными, если рассматривать роль хемосинтетиков в природе вообще. Но на вопрос о их «биологической роли» составители этого задания, очевидно, ждут от учащихся ответа б). К фундаментальным знаниям по школьной биологии, прежде всего, относится знание того, что хемосинтетики — это автотрофные организмы и они, как и фотосинтетики, строят органические вещества своих клеток из СО2 воздуха (значит будут снижать концентрацию углекислоты в атмосфере).

Елена: Ааа, ясно теперь! Надо было упор делать на слово «биологическое», а не «значение»… Но разве «биологическое значение» и роль в природе не идентичные понятия? Печально, что ЕГЭ превращается не в проверку знаний, а в «угадай, что от тебя хотят».

5 . Дмитрий: Является ли корректным предложение: «Гетеротрофы потребляют энергию солнечного света, преобразованную автотрофами в энергию химических связей»? Это ответ на вопрос C1 «Энергию какого типа потребляют гетеротрофные живые организмы?».

Б.Ф.: Конечно ответ не совсем выглядит корректным. Правильнее написать, что “Гетеротрофы потребляют энергию готовых органических веществ, изначально образованных автотрофами за счет энергии солнечного света».

6. Дмитрий: Много вопросов в ЕГЭ насчёт транспорта воды и минеральных веществ — корневое давление, транспирация, осмос. А за счёт чего осуществляется движение органических веществ — как «вверх» так и «вниз»? Так же по градиенту концентрации?

Б.Ф.: Воде, с растворенными в ней минеральными веществами, необходимо подниматься из почвы вверх по растению (преодолевая силы земного притяжения — гравитацию). Поэтому и нужен «насос» для поднятия воды по ксилеме. А органические вещества образуются вверху растения в листьях и они, наоборот, под действием сил тяжести свободно перемещаются вниз по стеблю (флоэмный ток) к корням.

7. Светлана: Борис Фагимович, очень часто сталкиваюсь с вопросом о цианобактериях. Они относятся к фотосинтетикам, а не хемосинтетикам, да?

Б.Ф.: Да, Светлана, цианобактерии (или сине-зеленые бактерии), раньше неправильно называли сине-зеленые водоросли, являются фотосинтезирующими бактериями. Они уникальны еще и тем, что способны к азотфиксации.

Светлана: То есть они ещё и хемосинтетики. Или я чего то недопонимаю?

Б.Ф.: Нет, Светлана. Азотфиксация очень энергозатратный процесс «по расщеплению» тройной связи в молекуле N2. В природе его могут осуществлять только немногие бактерии-азотфиксаторы, питающиеся углеводами растений. Конечно же, они все гетеротрофы. Вот бактерии нитрификаторы (переводящие нитритный азот в нитратный) являются хемосинтетиками.

8. Айдар: В какое время возникает первичный крахмал? В чем его биологическая роль?

Б.Ф.: Первичный или ассимиляционный крахмал образуется в результате процесса связывания углекислоты в строме хлоропластов в цикле Кальвина в «темновую» фазу фотосинтеза. Этот процесс не обязательно должен происходить ночью, а стадия так названа, так как для осуществления этого процесса свет не требуется.
Биологическую роль фотосинтезированного крахмала невозможно переоценить, так как он является энергетическим материалом для растения. А растения в целом на планете Земля, являясь первичными продуцентами органических веществ, обеспечивают существование всех остальных групп организмов (животных, бактерий, грибов).

Уважаемые посетители блога, у кого возникнут вопросы к репетитору биологии по Скайпу, пишите в комментариях, у меня на блоге вы можете приобрести ответы на все тесты ОБЗ ФИПИ за все годы проведения экзаменов по ЕГЭ и ОГЭ (ГИА).

Источник

Энергетический обмен

Обмен веществ

Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза — диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.

Читайте также:  Питание для сердца при беременности

Энергетический обмен

Энергетический обмен (диссимиляция — от лат. dissimilis ‒ несходный) — обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Обсудим этапы энергетического обмена более подробно:

    Подготовительный этап

Осуществляется в ферментами, в результате действия которых, сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Под действием ферментов белки расщепляются на аминокислоты, жиры — на глицерин и жирные кислоты, сложные углеводы — до простых сахаров.

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Кислородный этап (аэробный)

Этот этап доступен только для аэробов — организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ — в сумме с двух ПВК выход составляет 36 молекул АТФ.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

АТФ — аденозинтрифосфорная кислота

Трудно переоценить роль в клетке АТФ — универсального источника энергии. Молекула АТФ состоит из азотистого основания — аденина, углевода — рибозы и трех остатков фосфорной кислоты.

Между остатками фосфорной кислоты находятся макроэргические связи — ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда «∽».

АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:

  • АТФ + H2O = АДФ + H3PO4 + E
  • АДФ + H2O = АМФ + H3PO4 + E
  • АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Задания части 2 ЕГЭ по теме «Пищеварение у человека»

1. Почему лечение человека антибиотиками может привести к нарушению функции кишечника? Назовите не менее двух причин.

1) Антибиотики убивают полезные бактерии, расщепляющие углеводы (клетчатку) и выделяющие витамины.
2) Вместо убитых полезных бактерий в толстом кишечнике быстро размножаются гнилостные и болезнетворные.

2. Какие части имеют зубы у млекопитающих? Укажите виды зубов и их функции.

1) Зубы млекопитающих состоят из коронки, шейки и корня.
2) Виды зубов: резцы, клыки, коренные.
3) Резцы необходимы для откусывания кусков от пищи, клыки – для раздирания, а коренные – для перетирания и пережевывания пищи.

3. Железистые клетки печени вырабатывают желчь. Укажите не менее трех функций желчи в процессе пищеварения. Ответ поясните.

1) желчь эмульгирует жиры (дробит на мелкие частицы), что способствует их расщеплению ферментами;
2) желчь усиливает перистальтику кишечника – способствует продвижению пищи;
3) желчь способствует усилению отделения сока поджелудочной железы и активирует его ферменты

Читайте также:  Расчет рациона питания 1 день

4. Где расположены центры нервной регуляции выделения желудочного сока в организме человека? Как осуществляется безусловно- и условно-рефлекторная регуляция этого процесса?

1) Центры нервной регуляции выделения желудочного сока в организме человека расположены в продолговатом мозге.
2) Безусловно-рефлекторное выделение желудочного сока происходит во время попадания пищи в ротовую полость и желудок.
3) Условно-рефлекторное выделение желудочного сока происходит при виде или запахе знакомой пищи, при разговоре о еде, при наступлении постоянного времени приема пищи.

5. Какие функции в организме человека выполняет печень? Укажите не менее четырех функций.

1) Барьерная функция – очищает кровь, оттекающую от пищеварительного тракта.
2) Является депо гликогена.
3) Вырабатывает желчь.
4) Синтезирует мочевину.
5) Разрушает эритроциты, запасает железо.

6. Найдите три ошибки в приведённом тексте «Пищеварение в кишечнике человека». Укажите номера предложений, в которых сделаны ошибки, и исправьте их. (1) Поджелудочную железу относят к железам смешанной секреции. (2) Она вырабатывает ферменты и гормоны. (3) Ферменты и гормоны поступают непосредственно в кровь. (4) Гормон инсулин понижает содержание глюкозы в крови. (5) Ферменты поджелудочного сока расщепляют практически все питательные вещества. (6) Под влиянием одних ферментов завершается расщепление белков, под влиянием других расщепляются углеводы до гликогена, под влиянием третьих жиры распадаются на глицерин и жирные кислоты. (7) В тонком кишечнике человека не только переваривается пища, но и все образовавшиеся вещества всасываются непосредственно в кровь.

3 — гормоны поступают в кровь, а ферменты — в двенадцатиперстную кишку;
6 — углеводы распадаются до глюкозы;
7 — глицерин и жирные кислоты всасываются в лимфу

7. Почему пищу необходимо тщательно пережевывать?

1) Хорошо пережеванная пища легче проглатывается.
2) При жевании увеличивается площадь поверхности пищи, поэтому увеличивается площадь соприкосновения пищи с пищеварительными ферментами. Это ускоряет процесс переваривания.
3) При раздражении рецепторов ротовой полости происходит рефлекторное выделение желудочного сока, желудок готовится к приему пищи.
4) В процессе жевания амилаза слюны начинает расщеплять углеводы прямо в ротовой полости.

8. Какую функцию выполняют слюнные железы в пищеварении у млекопитающих? Укажите не менее трех функций.

1) Слюна обеззараживает пищу. В слюне содержится природный антибиотик лизоцим, обеззараживающий пищу.
2) В слюне содержатся пищеварительный фермент амилаза, который расщепляет крахмал.
3) Слюна смачивает пищу с помощью воды и склеивает её в удобный для проглатывания пищевой комок с помощью муцина.

9. Найдите три ошибки в приведенном тесте «Пищеварение». Укажите номера предложений, в которых допущены ошибки, исправьте их. (1) В ротовой полости пища измельчается и смачивается слюной. (2) Слюна содержит ферменты и антибактериальное вещество – лизоцим. (3) Ферменты слюны амилаза и мальтаза расщепляют белки до аминокислот. (4) Пища из ротовой полости по пищеводу поступает в желудок, где подвергается дальнейшей химической обработке. (5) Соляная кислота, входящая в состав желудочного сока, способствует расщеплению липидов. (6) Движение пищевой кашицы происходит благодаря сокращению и расслаблению мышц стенок кишечника. (7) Всасывание воды и основной массы питательных веществ происходит в толстой кишке.

1) 3 – ферменты слюны расщепляют крахмал до моно- и дисахаров;
2) 5 – соляная кислота обеспечивает антибактериальное действие, создает кислую среду, активизирует действия ферментов желудочного сока, расщепляющих белки;
3) 7 – всасывание воды и основной массы питательных веществ происходит в тонкой кишке (в толстой кишке всасываются вода, витамины группы В, Е, К, синтезированные бактериями.

10. Почему диетологи рекомендуют принимать пищу в одно и то же время? Почему продолжительность приёма пищи должна быть не менее 20–25 мин.? Свой ответ аргументируйте.

1) приём пищи в одно и то же время способствует образованию условных пищеварительных рефлексов на определённое время (обстановку);
2) при быстром употреблении пищи она плохо пережёвывается;
3) плохо измельчённая пища долго переваривается;
4) при быстром проглатывании пищи она недостаточно обрабатывается слюной;
5) недостаточная обработка пищи слюной ухудшает расщепление веществ;
6) при быстром употреблении пищи её поступление в организм происходит раньше, чем наступает чувство насыщения;
7) запаздывание чувства насыщения способствует перееданию

Источник